×

zbMATH — the first resource for mathematics

Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems. (English) Zbl 1211.90243
The authors study the set of approximate solutions to multivalued quasi-equilibrium problems in a rather general setting. They derive sufficient conditions for lower/upper semicontinuity and Hausdorff lower/upper semicontinuity of these solution sets. Two types of \(\varepsilon\)-solutions are considered. Quasi-variational inequalities, fixed point problems and quasi-optimization problems are discussed as special cases.

MSC:
90C31 Sensitivity, stability, parametric optimization
49J53 Set-valued and variational analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ait Mansour M., J. Glob. Optim. (2007)
[2] Ait Mansour M., J. Math. Anal. Appl. 306 pp 684– (2005) · Zbl 1068.49005 · doi:10.1016/j.jmaa.2004.10.011
[3] Anh L.Q., J. Math. Anal. Appl. 294 pp 699– (2004) · Zbl 1048.49004 · doi:10.1016/j.jmaa.2004.03.014
[4] Anh L.Q., J. Math. Anal. Appl. 321 pp 308– (2006) · Zbl 1104.90041 · doi:10.1016/j.jmaa.2005.08.018
[5] Anh L.Q., J. Optim. Theory Appl. 135 pp 271– (2007) · Zbl 1146.90516 · doi:10.1007/s10957-007-9250-9
[6] Anh L.Q., J. Glob. Optim. 37 pp 449– (2007) · Zbl 1156.90025 · doi:10.1007/s10898-006-9062-8
[7] Anh L.Q., J. Glob. Optim. (2007)
[8] Anh L.Q., J. Glob. Optim. (2007)
[9] Bianchi M., Oper. Res. Lett. 31 pp 445– (2003) · Zbl 1112.90082 · doi:10.1016/S0167-6377(03)00051-8
[10] Bianchi M., Optimization 55 pp 221– (2006) · Zbl 1149.90156 · doi:10.1080/02331930600662732
[11] Brânzei R., J. Math. Anal. Appl. 285 pp 619– (2003) · Zbl 1037.47038 · doi:10.1016/S0022-247X(03)00450-5
[12] Cheng Y.H., J. Glob. Optim. 32 pp 543– (2005) · Zbl 1097.49006 · doi:10.1007/s10898-004-2692-9
[13] Domokos A., J. Glob. Optim. 23 pp 99– (2002) · Zbl 1009.47064 · doi:10.1023/A:1014096127736
[14] Huang N.J., Math. Comput. Model. 43 pp 1267– (2006) · Zbl 1187.90286 · doi:10.1016/j.mcm.2005.06.010
[15] Khanh P.Q., J. Glob. Optim. 32 pp 569– (2005) · Zbl 1097.49013 · doi:10.1007/s10898-004-2694-7
[16] Khanh P.Q., J. Optim. Theory Appl. 133 pp 329– (2007) · Zbl 1146.49006 · doi:10.1007/s10957-007-9190-4
[17] Li S.J., J. Optim. Theory Appl. 113 pp 283– (2002) · Zbl 1003.47049 · doi:10.1023/A:1014830925232
[18] Muu L.D., Math. Operationsforsch. Statist. Ser. Optim. 15 pp 347– (1984) · Zbl 0553.49007 · doi:10.1080/02331938408842947
[19] Zhao J., J. Math. Anal. Appl. 207 pp 240– (1977) · Zbl 0872.90093 · doi:10.1006/jmaa.1997.5288
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.