A general approach for population games with application to vaccination. (English) Zbl 1211.92049

Summary: Reconciling the interests of individuals with the interests of communities is a major challenge in designing and implementing health policies. We present a technique based on a combination of mechanistic population-scale models, Markov decision process theory and game theory that facilitates the evaluation of game theoretic decisions at both individual and community scales. To illustrate our technique, we provide solutions to several variants of the simple vaccination game including imperfect vaccine efficacy and differential waning of natural and vaccine immunity. In addition, we show how path-integral approaches can be applied to the study of models in which strategies are fixed waiting times rather than exponential random variables. These methods can be applied to a wide variety of decision problems with population-dynamic feedbacks.


92D30 Epidemiology
91A40 Other game-theoretic models
90C40 Markov and semi-Markov decision processes
92C50 Medical applications (general)
Full Text: DOI Link


[1] J. Kenneth, Arrow and Mordecai Kurz, Public Investment, the Rate of Return, and Optimal Fiscal Policy, Johns Hopkins Press, Baltimore, MD, 1970.; J. Kenneth, Arrow and Mordecai Kurz, Public Investment, the Rate of Return, and Optimal Fiscal Policy, Johns Hopkins Press, Baltimore, MD, 1970. · Zbl 0196.23405
[2] Barrett, S., Global disease eradication, J. European Econ. Assoc., 1, 2, 591 (2003)
[3] Bauch, C. T.; Earn, D. J.D., Vaccination and the theory of games, Proc. Nat. Acad. Sci., 101, 13391 (2004) · Zbl 1064.91029
[4] Bauch, Chris T., Dynamic games with imitation predict vaccinating behavior, Proc. Roy. Soc. London, Ser. B, 272, 1573, 1669 (2005)
[5] Bauch, Chris T.; Galvani, Alison P.; Earn, David J. D., Group interest versus self-interest in smallpox vaccination policy, Proc. Nat. Acad. Sci., 100, 18, 10564 (2003), September 2 · Zbl 1065.92038
[6] Brito, D. L.; Sheshinski, E.; Intriligator, M. D., Externalities and compulsory vaccinations, J. Public Econ., 45, 69 (1991)
[7] Chen, F. H., Rational behavioral response and the transmission of stds, Theor. Popul. Biol., 66, 1, 307 (2004) · Zbl 1073.92042
[8] Chen, F. H., A susceptible-infected epidemic model with voluntary vaccinations, J. Math. Biol., 53, 1, 253 (2006) · Zbl 1098.92044
[9] Chen, F. H., On the transmission of hiv with self-protective behavior and preferred mixing, Math. Biosci., 199, 1, 141 (2006) · Zbl 1086.92046
[10] Chen, Frederick H., Modeling the effect of information quality on risk behavior change and the transmission of infectious diseases, Math. Biosci., 217, 125 (2009) · Zbl 1157.92026
[11] Christiansen, F. B.; Loeschcke, V., Evolution and intraspecific exploitative competition I. One-locus theory for small additive gene effects, Theor. Popul. Biol., 18, 3, 297 (1980) · Zbl 0468.92013
[12] Eshel, I., Evolutionary and continuous stability, J. Theor. Biol., 103, 1, 99 (1983)
[13] Fine, P. E.M.; Clarkson, J. A., Individual versus public priorities in the determination of optimal vaccination policies, American J. Epidemiol., 124, 6, 1012 (1986)
[14] Francis, P. J., Optimal tax/subsidy combinations for the flu season, J. Econ. Dyn. Control, 28, 10, 2037 (2004), September · Zbl 1201.91132
[15] Galvani, A. P.; Reluga, T. C.; Chapman, G., Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum, Proc. Nat. Acad. Sci., 104, 3, 5692 (2007)
[16] Geoffard, Pierre-Yves; Philipson, Tomas, Disease eradication: private versus public vaccination, The American Econ. Rev., 87, 1, 222 (1997), March
[17] Geritz, S. A.H.; Kisdi, E.; Meszena, G.; Metz, J. A.J., Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12, 35 (1998)
[18] Gigerenzer, Gerd; Todd, Peter M., Simple Heuristics That Make Us Smart (2000), Oxford University Press
[19] Heffernan, J. M.; Keeling, M. J., Implications of vaccination and waning immunity, Proc. Roy. Soc. B, 276, 2071 (2009)
[20] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics (1998), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0914.90287
[21] Howard, Ronald A., Dynamic Programming and Markov Processes (1960), MIT Press: MIT Press Cambridge, MA · Zbl 0091.16001
[22] Kahneman, D., Maps of bounded rationality: psychology for behavioral economics, American Econ. Rev., 93, 5, 1449 (2003)
[23] Kermack, W. O.; McKendrick, A. G., Contributions to the mathematical-theory of epidemics, Proc. Roy. Soc. London, 115, 700 (1927) · Zbl 0007.31502
[24] Kingman, JFC, Markov transition probabilities. I, Probability Theory and Related Fields, 7, 4, 248 (1967) · Zbl 0183.20101
[25] Michael Kremer, Christopher M. Snyder, Heidi Williams, Which vaccines deserve the largest subsides? An integrated economic and epidemiological model, Working paper, 2006.; Michael Kremer, Christopher M. Snyder, Heidi Williams, Which vaccines deserve the largest subsides? An integrated economic and epidemiological model, Working paper, 2006.
[26] Mesterton-Gibbons, Michael, An Introduction to Game-Theoretic Modelling (1992), Addison-Wesley: Addison-Wesley Redwood City, CA · Zbl 0771.90106
[27] Muller, J., Optimal vaccination strategies-for whom?, Math. Biosci., 139, 2, 133 (1997), January 15 · Zbl 0880.92033
[28] Osborne, M. J., An Introduction to Game Theory (2004), Oxford University Press: Oxford University Press New York, NY · Zbl 1140.91365
[29] Philipson, T., Economic epidemiology of infectious disease, (Culyer, Anthony J.; Newhouse, Joseph P., Handbook of Health Economics, vol. 1B (2000), Elsevier: Elsevier New York, NY), 1761
[30] Puterman, Martin L., Markov Decision Processes: Discrete Stochastic Dynamic Programming (2005), Wiley: Wiley Hoboken, NJ · Zbl 1184.90170
[31] Rasmusen, E., Games and Information: An Introduction to Game Theory (2006), Blackwell Publishing · Zbl 1094.91001
[32] Reluga, T., Game theory of social distancing in response to an epidemic, PLOS Comput. Biol., 6, 5, e1000793 (2010)
[33] Reluga, T. C., An SIS game with two subpopulations, J. Biol. Dyn., 3, 5, 515 (2009) · Zbl 1342.92277
[34] Reluga, T. C.; Bauch, C. T.; Galvani, A. P., Evolving public perceptions and stability in vaccine uptake, Math. Biosci., 204, 185 (2006) · Zbl 1104.92042
[35] Reluga, T. C.; Medlock, J.; Poolman, E.; Galvani, A. P., Optimal timing of disease transmission in an age-structured population, Bull. Math. Biol., 69, 8, 2711 (2007) · Zbl 1245.91011
[36] Reluga, T. C.; Medlock, J.; Perelson, A., Backward bifurcations and multiple equilibria in epidemic models with structured immunity, J. Theor. Biol., 252, 155 (2008) · Zbl 1398.92249
[37] Rockafellar, R. T., Coherent approaches to risk in optimization under uncertainty, Tutorials Oper. Res. INFORMS, 38 (2007)
[38] Ross, R.; Hudson, H. P., An application of the theory of probabilities to the study of a priori pathometry-part II, Proc. Roy. Soc. London A, 43, 212 (1917)
[39] Sonnenberg, F. A.; Beck, J. R., Markov models in medical decision making: a practical guide, Med. Decision Making, 13, 4, 322 (1993)
[40] Sterman, John D., Learning from evidence in a complex world, American J. Public Health, 96, 505 (2006)
[41] Thomas, Bernhard, On evolutionarily stable sets, J. Math. Biol., 22, 105 (1985) · Zbl 0589.92011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.