×

zbMATH — the first resource for mathematics

Control theory on Lie groups. (English. Russian original) Zbl 1211.93038
J. Math. Sci., New York 156, No. 3, 381-439 (2009); translation from Sovrem. Mat. Fundam. Napravl. 27, 5-59 (2007).
Summary: An introductory course on control theory on Lie groups is given. Controllability and optimal control for left-invariant problems on Lie groups are addressed. A general theory is accompanied by concrete examples. The course is intended for graduate students; no preliminary knowledge of control theory or Lie groups is assumed.
Reviewer: Reviewer (Berlin)

MSC:
93B25 Algebraic methods
49K15 Optimality conditions for problems involving ordinary differential equations
70E18 Motion of a rigid body in contact with a solid surface
93B05 Controllability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Springer-Verlag (2004). · Zbl 1062.93001
[2] R. El Assoudi, J. P. Gauthier, and I. Kupka, ”On subsemigroups of semisimple Lie groups,” Ann. Inst. H. Poincaré, 13, No. 1, 117–133 (1996). · Zbl 0848.93006
[3] V. Ayala Bravo, ”Controllability of nilpotent systems,” in: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publ., Warszawa, 32, 35–46 (1995). · Zbl 0839.93018
[4] B. Bonnard, ”Contrôllabilité des systèmes bilinéaires,” Math. Syst. Theory, 15, 79–92 (1981). · Zbl 0502.93010 · doi:10.1007/BF01786974
[5] B. Bonnard, V. Jurdjevic, I. Kupka, and G. Sallet, ”Transitivity of families of invariant vector fields on the semidirect products of Lie groups,” Trans. Amer. Math. Soc., 271, No. 2, 525–535 (1982). · Zbl 0519.49023 · doi:10.1090/S0002-9947-1982-0654849-4
[6] W. Boothby, ”A transitivity problem from control theory,” J. Differ. Equat., 17, 296–307 (1975). · Zbl 0316.93006 · doi:10.1016/0022-0396(75)90045-5
[7] W. Boothby and E. N. Wilson, ”Determination of the transitivity of bilinear systems,” SIAM J. Control, 17, 212–221 (1979). · Zbl 0406.93037 · doi:10.1137/0317016
[8] A. Borel, ”Some remarks about transformation groups transitive on spheres and tori”, Bull. Amer. Math. Soc., 55, 580–586 (1949). · Zbl 0034.01603 · doi:10.1090/S0002-9904-1949-09251-0
[9] A. Borel, ”Le plan projectif des octaves et les sphères comme espaces homogènes,” C. R. Acad. Sci. Paris, 230, 1378–1380 (1950). · Zbl 0041.52203
[10] U. Boscain, T. Chambrion, and J.-P. Gauthier, ”On the K + P problem for a three-level quantum system: Optimality implies resonance,” J. Dynam. Control Systems, 8, 547–572 (2002). · Zbl 1022.53028 · doi:10.1023/A:1020767419671
[11] R. W. Brockett, ”System theory on group manifolds and coset spaces,” SIAM J. Control, 10, 265–284 (1972). · Zbl 0238.93001 · doi:10.1137/0310021
[12] J. P. Gauthier and G. Bornard, ”Contrôlabilité des systèmes bilinèaires,” SIAM J. Control Optim., 20 (1982), No. 3, 377–384. · Zbl 0579.93005 · doi:10.1137/0320029
[13] J. Hilgert, K. H. Hofmann, and J. D. Lawson, ”Controllability of systems on a nilpotent Lie group,” Beiträge Algebra Geometrie, 20, 185–190 (1985). · Zbl 0579.22010
[14] V. Jurdjevic, Geometric Control Theory, Cambridge Univ. Press (1997). · Zbl 0940.93005
[15] V. Jurdjevic and I. Kupka, ”Control systems subordinated to a group action: Accessibility,” J. Differ. Equat., 39, 186–211 (1981). · Zbl 0531.93008 · doi:10.1016/0022-0396(81)90072-3
[16] V. Jurdjevic and I. Kupka, ”Control systems on semi-simple Lie groups and their homogeneous spaces,” Ann. Inst. Fourier, 31, No. 4, 151–179 (1981). · Zbl 0453.93011
[17] V. Jurdjevic and H. Sussmann, ”Control systems on Lie groups,” J. Differ. Equat., 12, 313–329 (1972). · Zbl 0237.93027 · doi:10.1016/0022-0396(72)90035-6
[18] D. F. Lawden, Elliptic Functions and Applications, Springer-Verlag (1980). · Zbl 0689.33001
[19] J. D. Lawson, ”Maximal subsemigroups of Lie groups that are total,” Proc. Edinburgh Math. Soc., 30, 479–501 (1985). · Zbl 0649.22004 · doi:10.1017/S0013091500026870
[20] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity Dover, New York (1927).
[21] D. Mittenhuber, ”Controllability of solvable Lie algebras,” J. Dynam. Control Systems, 6, No. 3, 453–459 (2000). · Zbl 1041.22006 · doi:10.1023/A:1009522908016
[22] D. Mittenhuber, ”Controllability of systems on solvable Lie groups: the generic case,” J. Dynam. Control Systems, 7, No. 1, 61–75 (2001). · Zbl 1022.22006 · doi:10.1023/A:1026697622549
[23] F. Monroy-Pérez, ”Non-Euclidean Dubins problem,” J. Dynam. Control Systems, 4, No. 2, 249–272 (1998). · Zbl 0947.49014 · doi:10.1023/A:1022842019374
[24] F. Monroy-Pérez and A. Anzaldo-Meneses, ”Optimal control on the Heisenberg group”, J. Dynam. Control Systems, 5, No. 4, 473–499 (1999). · Zbl 0956.49013 · doi:10.1023/A:1021787121457
[25] F. Monroy-Pérez and A. Anzaldo-Meneses, ”Optimal control on nilpotent Lie groups”, J. Dynam. Control Systems, 8, No. 4, 487–504 (2002). · Zbl 1055.49018 · doi:10.1023/A:1020711301924
[26] F. Monroy-Pérez and A. Anzaldo-Meneses, ”The step-2 nilpotent (n, n(n+1)/2) sub-Riemannian geometry,” J. Dynam. Control Systems, 12, No. 2, 185–216 (2006). · Zbl 1111.49019 · doi:10.1007/s10450-006-0380-4
[27] D. Montgomery and H. Samelson, ”Transformation groups of spheres,” Ann. Math., 44, 454–470 (1943). · Zbl 0063.04077 · doi:10.2307/1968975
[28] R. Montgomery, A Tour of Sub-Riemannian Geometries, Their Geodesics and Applications, Amer. Math. Soc. (2002). · Zbl 1044.53022
[29] O. Myasnichenko, ”Nilpotent (3, 6) sub-Riemannian problem,” J. Dynam. Control Systems, 8, No. 4, 573–597 (2002). · Zbl 1047.93014 · doi:10.1023/A:1020719503741
[30] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon Press, Oxford (1964). · Zbl 0117.31702
[31] Yu. L. Sachkov, ”Controllability of hypersurface and solvable invariant systems,” J. Dynam. Control Systems, 2, No. 1, 55–67 (1996). · Zbl 0991.93014 · doi:10.1007/BF02259622
[32] Yu. L. Sachkov, ”Controllability of right-invariant systems on solvable Lie groups,” J. Dynam. Control Systems, 3, No. 4, 531–564 (1997). · Zbl 0991.93015
[33] Yu. L. Sachkov, On invariant orthants of bilinear systems. J. Dynam. Control Systems, 4, No. 1, 137–147 (1998). · Zbl 0989.93012 · doi:10.1023/A:1022829201840
[34] Yu. L. Sachkov, ”Classification of controllable systems on low-dimensional solvable Lie groups,” J. Dynam. Control Systems, 6, No. 2, 159–217 (2000). · Zbl 1073.93510 · doi:10.1023/A:1009577803607
[35] Yu. L. Sachkov, ”Controllability of invariant systems on Lie groups and homogeneous spaces,” J. Math. Sci., 100, No. 4, 2355–2427 (2000). · Zbl 1073.93511
[36] Yu. L. Sachkov, ”Exponential mapping in the generalized Dido problem,” Mat. Sb., 194, No. 9, 63–90 (2003). · Zbl 1054.31001 · doi:10.1070/SM2003v194n01ABEH000706
[37] Yu. L. Sachkov, ”Symmetries of flat rank-two distributions and sub-Riemannian structures,” Trans. Amer. Math. Soc., 356, No. 2, 457–494 (2004). · Zbl 1038.53030 · doi:10.1090/S0002-9947-03-03342-7
[38] Yu. L. Sachkov, ”Discrete symmetries in the generalized Dido problem,” Mat. Sb., 197, No. 2, 95–116 (2006). · Zbl 1155.37004 · doi:10.1070/SM2006v197n01ABEH003748
[39] Yu. L. Sachkov, ”The Maxwell set in the generalized Dido problem,” Mat. Sb., 197, No. 4, 123–150 (2006). · Zbl 1144.53044
[40] Yu. L. Sachkov, ”Complete description of the Maxwell strata in the generalized Dido problem,” Mat. Sb., 197, No. 6: 111–160 (2006). · Zbl 1148.53022
[41] Yu. L. Sachkov, ”Maxwell strata in Euler’s elastic problem” (to appear). · Zbl 1375.70017
[42] H. Samelson, ”Topology of Lie groups,” Bull. Amer. Math. Soc., 58, 2–37 (1952). · Zbl 0047.16701 · doi:10.1090/S0002-9904-1952-09544-6
[43] L. A. B. San Martin, ”Invariant control sets on flag manifolds,” Math. Control Signals Systems, 6, 41–61 (1993). · Zbl 0780.93024 · doi:10.1007/BF01213469
[44] L. A. B. San Martin, O. G. do Rocio, and A. J. Santana, ”Invariant cones and convex sets for bilinear control systems and parabolic type of semigroups,” J. Dynam. Control Systems, 12, 419–432 (2006). · Zbl 1111.93007 · doi:10.1007/s10450-006-0007-9
[45] L. A. B. San Martin and P. A. Tonelli, ”Semigroup actions on homogeneous spaces,” Semigroup Forum, 14, 1–30 (1994).
[46] F. Silva Leite and P. Crouch, ”Controllability on classical Lie groups,” Math. Control Signals Systems, 1, 31–42 (1988). · Zbl 0658.93013 · doi:10.1007/BF02551234
[47] R. M. M. Troncoso, ”Regular elements and global controllability in SL(d, R),” J. Dynam. Control Systems, 10, No. 1, 29–54 (2004). · Zbl 1035.93009 · doi:10.1023/B:JODS.0000012016.06734.19
[48] A. M. Vershik and V. Ya. Gershkovich, ”Nonholonomic dynamic systems. Geometry of distributions and variational problems,” in: Encycl. Math. Sci., 16, Springer-Verlag (1987), pp. 5–85. · Zbl 0797.58007
[49] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott Foresman, Glenview, Illinois (1971). · Zbl 0241.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.