zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Passive learning and input-to-state stability of switched Hopfield neural networks with time-delay. (English) Zbl 1211.93109
Summary: We propose a new passive weight learning law for switched Hopfield neural networks with time-delay under parametric uncertainty. Based on the proposed passive learning law, some new stability results, such as asymptotical stability, Input-to-State Stability (ISS), and Bounded Input-Bounded Output (BIBO) stability, are presented. An existence condition for the passive weight learning law of switched Hopfield neural networks is expressed in terms of strict Linear Matrix Inequality (LMI). Finally, numerical examples are provided to illustrate our results.

93D21Adaptive or robust stabilization
68T05Learning and adaptive systems
LMI toolbox
Full Text: DOI
[1] Bafghi, A.; Safabakhsh, R.; Sadeghiyan, B.: Finding the differential characteristics of block ciphers with neural networks, Inform. sci. 178, No. 15, 3118-3132 (2008) · Zbl 1283.94047
[2] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishinan, V.: Linear matrix inequalities in systems and control theory, (1994) · Zbl 0816.93004
[3] Byrnes, C.; Isidori, A.; Willem, J.: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear system, IEEE trans. Autom. control 36, 1228-1240 (1991) · Zbl 0758.93007 · doi:10.1109/9.100932
[4] Chairez, I.; Poznyak, A.; Poznyak, T.: New sliding-mode learning law for dynamic neural network observer, IEEE trans. Circuits syst. II 53, 1338-1342 (2006) · Zbl 1120.93351
[5] Chen, B.; Li, H.; Lin, C.; Zhou, Q.: Passivity analysis for uncertain neural networks with discrete and distributed time-varying delays, Phys. lett. A 373, 1242-1248 (2009) · Zbl 1228.92002 · doi:10.1016/j.physleta.2009.01.047
[6] Chen, Y.; Li, W.; Bi, W.: Improved results on passivity analysis of uncertain neural networks with time-varying discrete and distributed delays, Neural process. Lett. 30, No. 2, 155-169 (2009)
[7] Chu, T.; Zhang, C.: New necessary and sufficient conditions for absolute stability of neural networks, Neural networks 20, 94-101 (2007) · Zbl 1158.68443 · doi:10.1016/j.neunet.2006.06.003
[8] Chu, T.; Zhang, C.; Zhang, Z.: Necessary and sufficient condition for absolute stability of normal neural networks, Neural netw. 16, 1223-1227 (2003)
[9] Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M.: LMI control toolbox, (1995)
[10] Gu, K.; Kharitonov, V.; Chen, J.: Stability of time-delay systems, (2003) · Zbl 1039.34067
[11] Gupta, M. M.; Jin, L.; Homma, N.: Static and dynamic neural networks, (2003)
[12] Hopfield, J.: Neurons with grade response have collective computational properties like those of a two-state neurons, Proc. nat. Acad. sci. 81, 3088-3092 (1984)
[13] Huang, C.; He, Y.; Huang, L.; Zhu, W.: Pth moment stability analysis of stochastic recurrent neural networks with time-varying delays, Inform. sci. 178, No. 9, 2194-2203 (2008) · Zbl 1144.93030 · doi:10.1016/j.ins.2008.01.008
[14] Huang, H.; Qu, Y.; Li, H.: Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty, Phys. lett. A 345, 345-354 (2005) · Zbl 05314215
[15] J. Huang, J. Liu, Stability of Switched Cellular Neural Networks with Flat Fuzzy Feedback Min and Max Templates, Lecture Notes in Computer Science (part 2), vol. 5552, 2009, pp. 218 -- 224.
[16] Hunt, K.; Sbarbaro, D.; Zbikowski, R.; Gawthrop, P.: Neural networks for control systems -- A survey, Automatica 28, 1083-1112 (1992) · Zbl 0763.93004 · doi:10.1016/0005-1098(92)90053-I
[17] Jagannathan, S.; Lewis, F.: Identification of nonlinear dynamical systems using multilayered neural networks, Automatica 32, 1707-1712 (1996) · Zbl 0879.93010 · doi:10.1016/S0005-1098(96)80007-0
[18] Jin, L.; Gupta, M.: Stable dynamic backpropagation learning in recurrent neural networks, IEEE trans. Neural networks 10, 1321-1334 (1999)
[19] Khalil, H.: Nonlinear systems, (2001) · Zbl 1055.93064
[20] Li, P.; Cao, J.: Global stability in switched recurrent neural networks with time-varying delay via nonlinear measure, Nonlinear dyn. 49, No. 1 -- 2, 295-305 (2007) · Zbl 1176.92003 · doi:10.1007/s11071-006-9134-9
[21] Liang, J.; Wang, Z.; Liu, X.: Robust passivity and passification of stochastic fuzzy time-delay systems, Inform. sci. 180, No. 9, 1725-1737 (2010) · Zbl 1282.93159
[22] Liang, X. B.; Wu, L. D.: A simple proof of a necessary and sufficient condition for absolute stability of symmetric neural networks, IEEE trans. Circuits syst. I 45, 1010-1011 (1998) · Zbl 1055.93548 · doi:10.1109/81.721271
[23] Lou, X.; Cui, B.: Delay-dependent criteria for robust stability of uncertain switched Hopfield neural networks, Int. J. Autom. comput. 4, No. 3, 304-314 (2007)
[24] Matsouka, K.: Stability conditions for nonliner continuous neural networks with asymmetric connections weights, Neural netw. 5, 495-500 (1992)
[25] Narendra, K.; Tripathi, S.: Identification and optimization of aircraft dynamics, J. aircr. 10, No. 4, 193-199 (1973)
[26] Sanchez, E. N.; Perez, J. P.: Input-to-state stability (ISS) analysis for dynamic neural networks, IEEE trans. Circuits syst. I 46, 1395-1398 (1999) · Zbl 0956.68133 · doi:10.1109/81.802844
[27] Rovithakis, G.; Christodoulou, M.: Adaptive control of unknown plants using dynamical neural networks, IEEE trans. Syst. man cybern. 24, 400-412 (1994) · Zbl 0824.93037
[28] Rubio, J.; Yu, W.: Nonlinear system identification with recurrent neural networks and dead-zone Kalman filter algorithm, Neurocomputing 70, 2460-2466 (2007)
[29] Sontag, E.; Wang, Y.: On characterizations of the input-to-state stability property, Syst. control lett. 24, 351-359 (1995) · Zbl 0877.93121 · doi:10.1016/0167-6911(94)00050-6
[30] Suykens, J. A. K.; Vandewalle, J.; Moor, B. D.: Lure systems with multilayer perceptron and recurrent neural networks; absolute stability and dissipativity, IEEE trans. Autom. control 44, 770-774 (1999) · Zbl 0958.93076 · doi:10.1109/9.754815
[31] S. Wen, Z. Zeng, L. Zeng, Robust Stability of Switched Recurrent Neural Networks with Discrete and Distributed Delays under Uncertainty, Lecture Notes in Computer Science (part 2), vol. 5264, 2008, pp. 720 -- 729.
[32] Wu, H.: Global stability analysis of a general class of discontinuous neural networks with linear growth activation functions, Inform. sci. 179, No. 19, 3432-3441 (2009) · Zbl 1181.34063 · doi:10.1016/j.ins.2009.06.006
[33] Yu, W.; Li, X.: Some stability properties of dynamic neural networks, IEEE trans. Circuits syst. I 48, 256-259 (2001) · Zbl 1019.82015 · doi:10.1109/81.904893
[34] Yu, W.; Li, X.: Passivity analysis of dynamic neural networks with different time-scales, Neural process. Lett. 25, 143-155 (2007)
[35] Yuan, K.; Cao, J.; Li, H.: Robust stability of switched Cohen-Grossberg neural networks with mixed time-varying delays, IEEE trans. Syst. man cybern. -- part B 36, No. 6, 1356-1363 (2006)
[36] Zhang, Z.; Mou, S.; Lam, J.; Gao, H.: New passivity criteria for neural networks with time-varying delay, Neural netw. 22, No. 7, 864-868 (2009)