zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic stability and robust control for sampled-data systems with Markovian jump parameters. (English) Zbl 1211.93131
Summary: The problems of stochastic stability and robust control for a class of uncertain sampled-data systems are studied. The systems consist of random jumping parameters described by finite-state semi-Markov process. Sufficient conditions for stochastic stability or exponential mean square stability of the systems are presented. The conditions for the existence of a sampled-data feedback control and a multirate sampled-data optimal control for the continuous-time uncertain Markovian jump systems are also obtained. The design procedure for robust multirate sampled-data control is formulated as linear matrix inequalities (LMIs), which can be solved efficiently by available software toolboxes. Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed techniques.

MSC:
93E14Data smoothing (stochastic systems)
60K15Markov renewal processes
93D09Robust stability of control systems
WorldCat.org
Full Text: DOI
References:
[1] Aliyu, M. D. S.; Boukas, E. K.: Robust H$\infty $ control for Markovian jump nonlinear systems. IMA J. Math. control inform. 17, 295-308 (2000) · Zbl 0989.93028
[2] Araki, M.; Ito, Y.; Hagiwara, T.: Frequency response of sampled-data systems. Automatica 32, 483-497 (1996) · Zbl 0861.93021
[3] Boukas, E. K.: Stabilization of stochastic nonlinear hybrid systems. Int. J. Innovative computing, information and control 1, 131-141 (2005)
[4] Boukas, E. K.: Control of systems with controlled jump Markov disturbances. Control-theory adv. Tech. 9, 577-595 (1993)
[5] Bamieh, B.; Pearson, J. B.: A general framework for linear periodic systems with application to H$\infty $ sampled-data control. IEEE trans. Automat. control 37, 418-435 (1992) · Zbl 0757.93020
[6] Benjelloun, K.; Boukas, E. K.; Costa, O. L.: H$\infty $-control for linear time-delay systems with Markovian jumping parameters. J. optim. Theory appl. 105, 73-95 (2000) · Zbl 0971.93027
[7] Boukas, E. K.; Shi, P.: Stochastic stability and guaranteed cost control of discrete-time uncertain systems with Markovian jumping parameters. Internat. J. Robust nonlinear control 8, 1155-1167 (1998) · Zbl 0918.93060
[8] Chen, T.; Francis, B.: Optimal sampled-data control systems. (1995) · Zbl 0847.93040
[9] Chen, T.; Qiu, L.: H$\infty $ design of general multirate sampled-data control systems. Automatica 30, 1139-1152 (1994) · Zbl 0806.93038
[10] Costa, O. L. V.; Marques, R. P.: Mixed H2/H$\infty $-control of discrete-time Markovian jump linear systems. IEEE trans. Automat. control 43, 95-100 (1998) · Zbl 0907.93062
[11] Dragan, V.: The linear quadratic optimization problem for a class of singularly perturbed stochastic systems. Int. J. Innovative computing, information and control 1, 53-63 (2005)
[12] Dullerud, D. E.; Glover, K.: Robust performance of periods systems. IEEE trans. Automat. control 41, 1146-1159 (1996) · Zbl 0856.93034
[13] Feng, X.; Loparo, K. A.; Ji, Y.; Chizeck, H. J.: Stochastic stability properties of jump linear systems. IEEE trans. Automat. control 37, 38-53 (1992) · Zbl 0747.93079
[14] Fragoso, M. D.; Do Val, J. B. R.; Pinto, D. L.: Jump linear H$\infty $ control: the discrete-time case. Control-theory adv. Tech. 10, 1459-1474 (1995)
[15] Gao, H.; Lam, J.; Xie, L.; Wang, C.: New approach to mixed H2/H$\infty $ filtering for polytopic discrete-time systems. IEEE trans. Signal process. 53, 3183-3192 (2005)
[16] Gao, H.; Wang, C.: Delay-dependent robust H$\infty $ and L2 -- L$\infty $ filtering for a class of uncertain nonlinear time-delayed systems. IEEE trans. Automat. control 48, 1661-1666 (2003)
[17] Hagiwara, T.; Araki, M.: Design of a stable state feedback controller based on the multirate sampling of the plant output. IEEE trans. Automat. control 33, 812-819 (1988) · Zbl 0648.93043
[18] S. Hara, Y. Yamamoto, H. Fujioka, Modern and classical analysis/synthesis methods in sampled-data control --- A brief overview with numerical examples, in: Proc. 35th IEEE Conf. Decision Control, 1996, pp. 1251 -- 1256
[19] Hu, L. -S.; Cao, Y. -Y.; Shao, H. -H.: Constrained robust sampled-data control for nonlinear uncertain systems. Internat. J. Robust nonlinear systems 12, 447-464 (2002) · Zbl 1026.93035
[20] Hu, L. -S.; Lam, J.; Cao, Y. -Y.; Shao, H. -H.: LMI approach to robust H2 sampled-data control for linear uncertain systems. IEEE trans. Syst. man cyber. Part B 33, 149-155 (2003)
[21] Halevi, Y.; Ray, A.: Integrated communication and control systems: part I --- analysis and part II --- design consideration. ASME J. Dyn. syst. Meas. contr. 110, 367-381 (1988)
[22] Ji, Y.; Chizeck, H. J.; Feng, X.; Loparo, K. A.: Stability and control of discrete-time jump linear systems. Control-theory adv. Tech. 7, 247-270 (1991)
[23] Kabamba, P. T.; Hara, S.: Worst case analysis and design of sampled-data control systems. IEEE trans. Automat. control 38, 1337-1357 (1993) · Zbl 0787.93068
[24] Khammash, M. H.: Necessary and sufficient conditions for the robustness of time-varying systems with applications to sampled-data systems. IEEE trans. Automat. control 38, 49-57 (1993) · Zbl 0777.93018
[25] Kushner, H. J.: Stochastic stability and control. (1967) · Zbl 0244.93065
[26] Lall, S. G.; Dullerud, G. E.: An LMI solution to the robust synthesis problem for multi-rate sampled-data systems. Automatica 37 (2001) · Zbl 1031.93121
[27] Nguang, S. K.; Shi, P.: Fuzzy H-infinity output feedback control of nonlinear systems under sampled measurements. Automatica 39, 2169-2174 (2003) · Zbl 1041.93033
[28] Nguang, S. K.; Shi, P.: H$\infty $ filtering of nonlinear sampled-data systems. Automatica 36, 303-310 (2000) · Zbl 0943.93041
[29] Qiu, L.; Chen, T.: H2-optimal design of multirate sampled-data systems. IEEE trans. Automat. control 39, 2506-2511 (1994) · Zbl 0825.93436
[30] Shi, P.: Filtering on sampled-data systems with parametric uncertainty. IEEE trans. Automat. control 43, 1022-1027 (1998) · Zbl 0951.93050
[31] Shi, P.: Robust control of linear continuous time-delay systems with finite discrete jumps and norm-bounded uncertainties. Internat. J. Systems sci. 29, 1381-1392 (1998) · Zbl 1065.93510
[32] Shi, P.; Boukas, E. K.: H$\infty $ control for Markovian jumping linear systems with parametric uncertainty. J. optim. Theory appl. 95, 75-99 (1997) · Zbl 1026.93504
[33] Shi, P.; Boukas, E. K.; Agarwal, R. K.: Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delays. IEEE trans. Automat. control 44, 2139-2144 (1999) · Zbl 1078.93575
[34] Sivashankar, N.; Khargonekar, P. P.: Robust stability and performance analysis of sampled-data systems. IEEE trans. Automat. control 38, 58-69 (1993) · Zbl 0773.93069
[35] Voulgaris, P. G.; Bamieh, B.: Optimal H$\infty $ and H2 control of hybrid multirate systems. Systems control lett. 20, 249-261 (1993) · Zbl 0781.93062
[36] Yamamoto, Y.; Khargonekar, P. P.: Frequency response of sampled-data systems. IEEE trans. Automat. control 41, 166-176 (1996) · Zbl 0842.93050