×

Superconvergence analysis and a posteriori error estimation of a finite element method for an optimal control problem governed by integral equations. (English) Zbl 1212.65256

Summary: We discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.

MSC:

65K10 Numerical optimization and variational techniques
49J21 Existence theories for optimal control problems involving relations other than differential equations
49M30 Other numerical methods in calculus of variations (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI EuDML Link

References:

[1] W. Alt: On the approximation of infinite optimisation problems with an application to optimal control problems. Appl. Math. Optimization 12 (1984), 15–27. · Zbl 0567.49015 · doi:10.1007/BF01449031
[2] K. E. Atkinson: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge, 1997. · Zbl 0899.65077
[3] I. Babuška, A. K. Aziz (eds.): The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press, New York, 1972.
[4] R. Becker, H. Kapp, R. Rannacher: Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39 (2000), 113–132. · Zbl 0967.65080 · doi:10.1137/S0363012999351097
[5] H. Brunner, N. Yan: On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations. J. Comput. Appl. Math. 67 (1996), 185–189. · Zbl 0857.65145 · doi:10.1016/0377-0427(96)00012-X
[6] H. Brunner, N. Yan: Finite element methods for optimal control problems governed by integral equations and integro-differential equations. Numer. Math. 101 (2005), 1–27. · Zbl 1076.65057 · doi:10.1007/s00211-005-0608-3
[7] Y. Chen, W. Liu: Error estimates and superconvergence of mixed finite element for quadratic optimal control. Int. J. Numer. Anal. Model. 3 (2006), 311–321. · Zbl 1125.49026
[8] Y. Chen, N. Yi, W. Liu: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46 (2008), 2254–2275. · Zbl 1175.49003 · doi:10.1137/070679703
[9] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
[10] L. Du, N. Yan: High-accuracy finite element method for optimal control problem. J. Syst. Sci. Complex. 14 (2001), 106–110. · Zbl 0983.49022
[11] F. S. Falk: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44 (1973), 28–47. · Zbl 0268.49036 · doi:10.1016/0022-247X(73)90022-X
[12] D. A. French, J. T. King: Approximation of an elliptic control problem by the finite element method. Numer. Funct. Anal. Appl. Optim. 12 (1991), 299–314. · doi:10.1080/01630569108816430
[13] L. Ge, W. Liu, D. Yang: An equivalent a posteriori error estimate for a constrained optimal control problem. To appear.
[14] M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, P. E. Sobolevskii: Integral Operators in Spaces of Summable Functions. Noordhoff International Publishing, Leyden, 1976.
[15] R. Kress: Linear Integral Equations, 2nd Edition. Springer, New York, 1999. · Zbl 0920.45001
[16] R. Li, W. Liu, N. Yan: A posteriori error estimates of recovery type for distributed convex optimal control problems. J. Sci. Comput. 33 (2007), 155–182. · Zbl 1128.65048 · doi:10.1007/s10915-007-9147-7
[17] Q. Lin N. Yan: Structure and Analysis for Efficient Finite Element Methods. Publishers of Hebei University, Hebei, 1996. (In Chinese.)
[18] Q. Lin, S. Zhang, N. Yan: An acceleration method for integral equations by using interpolation post-processing. Adv. Comput. Math. 9 (1998), 117–129. · Zbl 0920.65087 · doi:10.1023/A:1018925103993
[19] J.-L. Lions: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin, 1971.
[20] J.-L. Lions: Some Methods in the Mathematical Analysis of Systems and their Control. Science Press, Beijing, 1981.
[21] W. Liu, N. Yan: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press, Beijing, 2008.
[22] W. Liu, N. Yan: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39 (2001), 73–99. · Zbl 0988.49018 · doi:10.1137/S0036142999352187
[23] W. B. Liu, N. Yan: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15 (2001), 285–309. · Zbl 1008.49024 · doi:10.1023/A:1014239012739
[24] C. Meyer, A. Rösch: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43 (2004), 970–985. · Zbl 1071.49023 · doi:10.1137/S0363012903431608
[25] P. Neittaanmäki, D. Tiba: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. Marcel Dekker, New York, 1994. · Zbl 0812.49001
[26] D. Tiba: Lectures on the Optimal Control of Elliptic Equations. University of Jyväskylä Press, Jyväskylä, 1995.
[27] N. Yan: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press, Beijing, 2008.
[28] N. Yan: Superconvergence and recovery type a posteriori error estimates for constrained convex optimal control problems. Advances in Scientific Computing and Applications (Y. Lu, W. Sun, T. Tang, eds.). Science Press, Beijing/New York, 2004, pp. 408–419.
[29] P. P. Zabreiko, A. I. Koshelev, M. A. Krasnosel’skii, S. G. Mikhlin, L. S. Rakovshchik, V. Ya. Stet’senko: Integral Equations. A Reference Text. Noordhoff International Publishing, Leyden, 1975.
[30] O. C. Zienkiewicz, J. Z. Zhu: The superconvergent patch recovery and a posteriori error estimates. Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331–1364, Part 2: 1365–1382. · Zbl 0769.73084 · doi:10.1002/nme.1620330702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.