zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Improved results on delay-dependent $H_\infty$ control for singular time-delay systems. (English) Zbl 1212.93088
Summary: The problem of delay-dependent $H_\infty$ control for singular systems with state delay is discussed. In terms of the linear matrix inequality (LMI) approach, a delay-dependent bounded real lemma (BRL) is presented to ensure the system to be regular, impulse free, and stable with $H_\infty$ performance condition via an augmented Lyapunov functional. Based on the BRL obtained, the delay-dependent condition for the existence of $H_\infty$ state feedback controller is presented via strict LMI. An explicit expression for the desired state feedback controller is also given. Numerical examples are presented to illustrate the significant improvement on the conservativeness of some reported results in the literature.

93B52Feedback control
Full Text: DOI