×

Simple algorithms for minimal triangulation of a graph and backward selection of a decomposable Markov network. (English) Zbl 1213.05251

Summary: We propose a simple algorithm called CliqueMinTriang for computing a minimal triangulation of a graph. If \(F\) is the set of edges that is added to \(G\) to make it a complete graph \(K_n\) then the asymptotic complexity of CliqueMinTriang is \(O(|F|(\delta ^{2}+|F|))\) where \(\delta \) is the degree of the subgraph of \(K_n\) induced by \(F\). Therefore our algorithm performs well when \(G\) is a dense graph. We also show how to exploit the existing minimal triangulation techniques in conjunction with CliqueMinTriang to efficiently find a minimal triangulation of nondense graphs. Finally we show how the algorithm can be adapted to perform a backward stepwise selection of decomposable Markov networks; the resulting procedure has the same time complexity as that of existing similar algorithms.

MSC:

05C85 Graph algorithms (graph-theoretic aspects)
68R10 Graph theory (including graph drawing) in computer science
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beeri, C.; Fagin, R.; Maier, D.; Yannakakis, M., On the desirability of acyclic database schemes, J. ACM, 30, 3, 479-513 (1983) · Zbl 0624.68087
[2] Berry, A.; Blair, J. R.S.; Heggernes, P.; Peyton, B. W., Maximum cardinality search for computing minimal triangulations of graphs, Algorithmica, 39, 4, 287-298 (2004) · Zbl 1090.68080
[3] Berry, A.; Bordat, J. P.; Heggernes, P.; Simonet, G.; Villanger, Y., A wide-range algorithm for minimal triangulation from an arbitrary ordering, J. Algorithms, 58, 1, 33-66 (2006) · Zbl 1093.68137
[4] Blair, J. R.S.; Heggernes, P.; Telle, J. A., A practical algorithm for making filled graphs minimal, Theoret. Comput. Sci., 250, 1-2, 125-141 (2001) · Zbl 0952.68104
[5] Blair, J. R.S.; Peyton, B. W., An introduction to chordal graphs and clique trees, (George, J. A.; Gilbert, J. R.; Liu, J. W.H., Sparse Matrix Computations: Graph Theory Issues and Algorithms. Sparse Matrix Computations: Graph Theory Issues and Algorithms, IMA Volumes in Mathematics and its Applications, 56 (1993), Springer Verlag), 1-30 · Zbl 0803.68081
[6] R. Boisvert, R. Pozo, K. Remington, B. Miller, R. Lipman, NIST MatrixMarket. http://math.nist.gov/MatrixMarket/index.html; R. Boisvert, R. Pozo, K. Remington, B. Miller, R. Lipman, NIST MatrixMarket. http://math.nist.gov/MatrixMarket/index.html
[7] A. Deshpande, M.N. Garofalakis, M.I. Jordan, Efficient stepwise selection in decomposable models, In: UAI, 2001, pp. 128-135; A. Deshpande, M.N. Garofalakis, M.I. Jordan, Efficient stepwise selection in decomposable models, In: UAI, 2001, pp. 128-135
[8] Ding, G.; Lax, R. F.; Chen, J.; Chen, P. P.; Marx, B. D., Comparison of greedy strategies for learning markov networks of treewidth k, (Arabnia, H. R.; Dehmer, M.; Emmert-Streib, F.; Yang, M. Q., Proceedings of the 2007 International Conference on Machine Learning (2007), CSREA Press: CSREA Press Las Vegas Nevada, USA), 294
[9] Heggernes, P., Minimal triangulations of graphs: A survey, Discrete Math., 306, 3, 297-317 (2006) · Zbl 1086.05069
[10] P. Heggernes, B. Peyton, Fast computation of minimal fill inside a given elimination ordering, SIAM J. Matrix Anal. Appl. 2008, (in press); P. Heggernes, B. Peyton, Fast computation of minimal fill inside a given elimination ordering, SIAM J. Matrix Anal. Appl. 2008, (in press) · Zbl 1176.65027
[11] Heggernes, P.; Telle, J. A.; Villanger, Y., Computing minimal triangulations in time \(o(n^\alpha \log n) = o(n^{2.376})\), SIAM J. Discret. Math., 19, 4, 900-913 (2005) · Zbl 1105.05066
[12] Ibarra, L., Fully dynamic algorithms for chordal graphs and split graphs, ACM Trans. Algorithms, 4, 4, 1-20 (2008) · Zbl 1445.05103
[13] Kullback, S.; Leibler, R. A., On information and sufficiency, Ann. Math. Statist, 22, 1, 79-86 (1951) · Zbl 0042.38403
[14] Malvestuto, F., Approximating discrete probability distributions with decomposable models, IEEE Trans. Syst. Man Cybern., 21, 5, 1287-1294 (1991)
[15] Malvestuto, F. M., Existence of extensions and product extensions for discrete probability distributions, Discrete Math., 69, 1, 61-77 (1988) · Zbl 0637.60021
[16] Rose, D. J.; Tarjan, R. E.; Lueker, G. S., Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5, 2, 266-283 (1976) · Zbl 0353.65019
[17] N. Srebro, Maximum likelihood markov networks: An algorithmic approach, MSc Thesis, Massachusetts Institute of Technology. http://ttic.uchicago.edu/ nati/Publications/Mthesis.pdf; N. Srebro, Maximum likelihood markov networks: An algorithmic approach, MSc Thesis, Massachusetts Institute of Technology. http://ttic.uchicago.edu/ nati/Publications/Mthesis.pdf
[18] N. Srebro, Maximum likelihood bounded tree-width markov networks, in: UAI ’01: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, University of Washington, Seattle, Washington, USA, pp. 504-511, 2001; N. Srebro, Maximum likelihood bounded tree-width markov networks, in: UAI ’01: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, University of Washington, Seattle, Washington, USA, pp. 504-511, 2001
[19] Tarjan, R. E.; Yannakakis, M., Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13, 3, 566-579 (1984) · Zbl 0545.68062
[20] Yannakakis, M., Computing the minimum fill-in is np-complete, SIAM. J. Algebr. Discrete Methods, 2, 1, 77-79 (1981) · Zbl 0496.68033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.