×

The total symbol theorem of a \(p\)-adic differential operator. (Le théorème du symbole total d’un opérateur différentiel \(p\)-adique.) (French) Zbl 1213.14042

This article continues earlier work [in: \(p\)-adic analysis, Proc. Int. Conf., Trento 1989, Lect. Notes Math. 1454, 267–308 (1990; Zbl 0727.14011)] of the authors on finiteness properties of rings of \(p\)-adic differential operators on weak formal schemes (the authors write: \({\dagger}\)-adic schemes). As the authors write, most of the results have been obtained in the late 80’s without having been published, but due to their central role their publication now becomes necessary.
Let \({\mathcal X}^{\dagger}\) denote a smooth weak formal scheme over a complete discrete valuation ring \((V,{\mathfrak m})\) of unequal characteristic \((0,p)\) and let \({\mathcal D}_{{\mathcal X}^{\dagger}/V}^{\dagger}\) be the sheaf of \(V\)-linear endomorphisms of \({\mathcal O}_{{\mathcal X}^{\dagger}}\) whose reduction modulo \({\mathfrak m}^s\) is a linear differential operator of order bounded by an affine function in \(s\). In this paper it is proved that locally there is an \({\mathcal O}_{{\mathcal X}^{\dagger}}\)-isomorphism between the sections of \({\mathcal D}_{{\mathcal X}^{\dagger}/V}^{\dagger}\) and the overconvergent symbols.
More precisely, let \(A^{\dagger}\) be a weakly complete \(V\)-algebra with coordinate functions \(x_1,\ldots,x_n\) such that their differentials form a basis of the \(A^{\dagger}\)-module of separated differetial forms. Let \(P\) be a differential operator of the ring \(D^{\dagger}_{A^{\dagger}/V}\). For \(\alpha\in {\mathbb N}^{n}\) define \(a_{\alpha}\in A^{\dagger}\) through \[ a_{\alpha}=\sum_{0\leq\beta\leq\alpha}{\alpha\choose\beta}(-x)^{\beta}P(x^{\alpha-\beta}). \] Then it is shown that \[ P=\sum_{\alpha}a_{\alpha}\Delta_x^{\alpha}. \] Moreover, the assignment \[ P\mapsto \sigma_P(x,\xi):=\sum_{\alpha}a_{\alpha}\xi^{\alpha} \] is an isomorphism of \(A^{\dagger}\)-modules \[ D^{\dagger}_{A^{\dagger}/V}\cong A^{\dagger}[\xi_1,\ldots,\xi_n]^{\dagger}. \]

MSC:

14F30 \(p\)-adic cohomology, crystalline cohomology
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials

Citations:

Zbl 0727.14011

References:

[1] Bayer, D.A.: The division algorithm and the Hilbert scheme. PhD thesis, Univ. Harvard, 1982. · Zbl 0482.10021
[2] Berthelot, P.: Cohomologie rigide et théorie des \(\mathcal D\)-modules. In \(p\)-adic analysis (Trento, 1989) , 80-124. Lecture Notes in Math. 1454 . Springer, Berlin, 1990. · Zbl 0722.14008
[3] Bosch, S., Güntzer, U. and Remmert, R.: Non archimedean analysis. Grunderlehren des Mathematischen Wissenschaften 261 . Springer-Verlag, Berlin, 1984. · Zbl 0539.14017
[4] Chase, S.U.: On the homological dimension of algebras of differential operators. Comm. Algebra 1 (1974), 351-363. · Zbl 0315.13011 · doi:10.1080/00927877408548623
[5] Fulton, W.: A note on weakly complete algebras. Bull. Amer. Math. Soc. 75 (1969), 591-593. · Zbl 0205.34303 · doi:10.1090/S0002-9904-1969-12250-0
[6] Grosse-Klönne, E.: Rigid analytic spaces with overconvergent structure sheaf. J. Reine Angew. Math. 519 (2000), 73-95 · Zbl 0945.14013 · doi:10.1515/crll.2000.018
[7] Grothendieck, A. and Dieudonné, J.: Eléments de Géométrie Algébrique IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. 32 , 1967.
[8] Grothendieck, A.: Espaces Vectoriels Topologiques . Instituto de Matemática Pura e Aplicada, Universidade de Sao Paulo, Sao Paulo, 1954. · Zbl 0058.33401
[9] Hauser, H. and Müller, M.: A rank theorem for analytic maps between power series spaces. Inst. Hautes Études Sci. Publ. Math. 80 (1994), 96-115. · Zbl 0831.58008 · doi:10.1007/BF02698897
[10] Kedlaya, K.S.: Finiteness of rigid cohomology with coefficients. Duke Math. J. 134 (2006), no. 1, 15-97. · Zbl 1133.14019 · doi:10.1215/S0012-7094-06-13412-9
[11] Mebkhout, Z.: Sur le théorème de finitude de la cohomologie \(p\)-adique d’une variété affine non singulière. Amer. J. Math. 119 (1997), 1027-1081. · Zbl 0926.14007 · doi:10.1353/ajm.1997.0031
[12] Mebkhout, Z.: Le théorème du symbole total d’un opérateur différentiel \(p\)-adique d’échelon \(h \geq 0\). À paraître dans Rev. Mat. Iberoam.
[13] Mebkhout, Z. and Narváez Macarro, L.: Sur les coefficients de de Rham-Grothendieck des variétés algébriques. In \(p\)-adic analysis (Trento, 1989) , 267-309. Lecture Notes in Math. 1454 . Springer, Berlin, 1990. · Zbl 0727.14011
[14] Mebkhout, Z. and Narváez Macarro, L.: La théorie du polynôme de Bernstein-Sato pour les algébres de Tate et de Dwork-Monsky-Washnitzer. Ann. Sci. École Norm. Sup. (4) 24 (1991), 227-256. · Zbl 0765.14009
[15] Meredith, D.: Weak formal schemes. Nagoya Math. J. 45 (1972), 1-38. · Zbl 0207.51502
[16] Monsky, P. and Washnitzer, G.: Formal Cohomology. I. Ann. of Math. (2) 88 (1968), 181-217. JSTOR: · Zbl 0162.52504 · doi:10.2307/1970571
[17] Narváez Macarro, L.: Division theorem over the Dwork-Monsky-Washnitzer completion of polynomial rings and Weyl algebras. In Rings, Hopf algebras, and Brauer groups (Antwerp/Brussels, 1996) , 175-191. Lecture Notes in Pure and Appl. Math. 197 . Dekker, New York, 1998. · Zbl 0944.13018
[18] Smith, S.P.: The global homological dimension of the ring of differential operators on a nonsingular variety over a field of positive characteristic. J. Algebra 107 (1987), 98-105. · Zbl 0617.13007 · doi:10.1016/0021-8693(87)90076-7
[19] Van der Put, M.: The cohomology of Monsky and Washnitzer. In Introductions aux cohomologies \(p\)-adiques (Luminy, 1984). Mém. Soc. Math. France (N.S.) 23 (1986), 33-59. · Zbl 0606.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.