×

On mixed initial-boundary value problems for systems that are not strictly hyperbolic. (English) Zbl 1213.35294

Summary: The classical theory of strictly hyperbolic boundary value problems has received several extensions since the 70s. One of the most noticeable is the result of Metivier establishing Majda’s “block structure condition” for constantly hyperbolic operators, which implies well-posedness for the initial-boundary value problem (IBVP) with zero initial data. The well-posedness of the IBVP with non-zero initial data requires that “\(L^{2}\) is a continuable initial condition”. For strictly hyperbolic systems, this result was proven by Rauch. We prove here, by using classical matrix theory, that his fundamental a priori estimates are valid for constantly hyperbolic IBVPs.

MSC:

35L50 Initial-boundary value problems for first-order hyperbolic systems
35B45 A priori estimates in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kreiss, Heinz-Otto, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., 23, 277-298 (1970) · Zbl 0193.06902
[2] Ralston, James V., Note on a paper of Kreiss, Comm. Pure Appl. Math., 24, 6, 759-762 (1971) · Zbl 0215.16802
[3] Rauch, Jeffrey, \(L_2\) is a continuable initial condition for Kreiss’ mixed problems, Comm. Pure Appl. Math., 25, 265-285 (1972) · Zbl 0226.35056
[4] Majda, Andrew; Osher, Stanley, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28, 5, 607-675 (1975) · Zbl 0314.35061
[5] Majda, A., The stability of multidimensional shock fronts, Mem. Amer. Math. Soc., 41, 275 (1983), iv+95 · Zbl 0506.76075
[6] Métivier, Guy, The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc., 32, 6, 689-702 (2000) · Zbl 1073.35525
[7] Benzoni-Gavage, Sylvie; Serre, Denis, Multidimensional hyperbolic partial differential equations, (Oxford Mathematical Monographs (2007), The Clarendon Press Oxford University Press: The Clarendon Press Oxford University Press Oxford), (First-order systems and applications) · Zbl 1113.35001
[8] Lars Garding, Solution directe du problème de Cauchy pour les équations hyperboliques, in: La théorie des équations aux dérivées partielles. Nancy, 9-15 avril 1956, Colloques Internationaux du Centre National de la Recherche Scientifique, LXXI, pages 71-90. Centre National de la Recherche Scientifique, Paris, 1956.; Lars Garding, Solution directe du problème de Cauchy pour les équations hyperboliques, in: La théorie des équations aux dérivées partielles. Nancy, 9-15 avril 1956, Colloques Internationaux du Centre National de la Recherche Scientifique, LXXI, pages 71-90. Centre National de la Recherche Scientifique, Paris, 1956. · Zbl 0075.09703
[9] Gantmacher, F. R., The theory of matrices. Vol. 1 (1998), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI, (Translated from the Russian by K. A. Hirsch, Reprint of the 1959 translation) · Zbl 0927.15001
[10] Serre, Denis, (Matrices. Matrices, Graduate Texts in Mathematics, vol. 216 (2002), Springer-Verlag: Springer-Verlag New York), (Theory and applications, Translated from the 2001 French original) · Zbl 1011.15001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.