# zbMATH — the first resource for mathematics

Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation. (English) Zbl 1213.35307
This paper deals with the focusing, cubic, nonlinear Klein-Gordon equation in $$\mathbb{R}^3_x$$ with large radial data in the energy space: $\ddot u-\Delta u+ u= u^3,\;u= u)t,x);\;\vec u(t)= (u(t),\dot u(t))\in{\mathcal H}= H^1_{\text{rad}}\times L^2_{\text{rad}}.\tag{1}$ As it is well-known, (1) possesses a unique positive radial stationary solution $$Q(x)$$, called the ground state and having the least energy $$E(Q)> 0$$ among the static solutions.
The authors propose a complete description of the evolution of $$u(t,x)$$ in that case: $$E(\vec u)< E(Q)+ \varepsilon^2$$, $$0<\varepsilon\ll 1$$. More precisely, they verify the following trichotomy in a small neighborhood of $$Q$$: On one side of a center-stable manifold one has finite time blow-up for $$t\geq 0$$, on the other side scattering to zero, and on the manifold itself one has scattering to $$Q$$, both as $$t\to+\infty$$. The above-mentioned class of data $$\vec u(0)$$ with energy at most slightly above that of $$A$$, is divided into 9 disjoint non-empty sets each displaying different asymptotic behaviour as $$t\to\pm\infty$$, which includes solutions blowing up in one time direction and scattering to $$0$$ on the other. For example, case (7) asserts that the solution $$u$$ is trapped by $$\pm Q$$ for $$t\to+\infty$$ (i.e. J$$u$$ in an $$\varepsilon$$-neighbourhood of $$\pm Q$$ after some time) and possesses finite time blow-up in $$t< 0$$.
The proof relies on an “one pass” theorem that excludes the existence of homoclinic orbits between $$Q$$ (as well $$-Q$$) and heteroclinic orbits connecting $$Q$$ with $$-Q$$.

##### MSC:
 35L70 Second-order nonlinear hyperbolic equations 35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text:
##### References:
  Bahouri, H.; Gérard, P., High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. math., 121, 1, 131-175, (1999) · Zbl 0919.35089  Bates, P.W.; Jones, C.K.R.T., The solutions of the nonlinear Klein-Gordon equation near a steady state, (), 1-9 · Zbl 0696.35142  Bates, P.W.; Jones, C.K.R.T., Invariant manifolds for semilinear partial differential equations, (), 1-38 · Zbl 0890.35161  Beceanu, M., A critical centre-stable manifold for the schroedinger equation in three dimensions, preprint  Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. I. existence of a ground state, Arch. ration. mech. anal., 82, 4, 313-345, (1983) · Zbl 0533.35029  Bizoń, P.; Chmaj, T.; Tabor, Z., On blowup for semilinear wave equations with a focusing nonlinearity, Nonlinearity, 17, 6, 2187-2201, (2004) · Zbl 1064.74112  Brenner, P., On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations, Math. Z., 186, 3, 383-391, (1984) · Zbl 0524.35084  Brenner, P., On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. differential equations, 56, 3, 310-344, (1985) · Zbl 0513.35066  Choptuik, M.W., Universality and scaling in gravitational collapse of a massless scalar field, Phys. rev. lett., 70, 9-12, (1993)  Choptuik, M.W.; Chmaj, T.; Bizoń, P., Critical behaviour in gravitational collapse of a Yang-Mills field, Phys. rev. lett., 77, 424-427, (1996)  Coffman, C., Uniqueness of the ground state solution for $$\operatorname{\Delta} u - u + u^3 = 0$$ and a variational characterization of other solutions, Arch. ration. mech. anal., 46, 81-95, (1972) · Zbl 0249.35029  Demanet, L.; Schlag, W., Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation, Nonlinearity, 19, 4, 829-852, (2006) · Zbl 1106.35044  Duyckaerts, T.; Merle, F., Dynamic of threshold solutions for energy-critical NLS, Geom. funct. anal., 18, 6, 1787-1840, (2009) · Zbl 1232.35150  Duyckaerts, T.; Merle, F., Dynamics of threshold solutions for energy-critical wave equation, Int. math. res. pap. IMRP, (2008) · Zbl 1159.35043  Duyckaerts, T.; Roudenko, S., Threshold solutions for the focusing 3D cubic Schrödinger equation, Rev. mat. iberoam., 26, 1, 1-56, (2010) · Zbl 1195.35276  Ginibre, J.; Velo, G., The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., 189, 4, 487-505, (1985) · Zbl 0549.35108  Ginibre, J.; Velo, G., Time decay of finite energy solutions of the nonlinear Klein-Gordon and schröinger equations, Ann. inst. H. Poincaré phys. théor., 43, 4, 399-442, (1985) · Zbl 0595.35089  Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry. I, J. funct. anal., 74, 1, 160-197, (1987) · Zbl 0656.35122  Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry. II, J. funct. anal., 94, 2, 308-348, (1990) · Zbl 0711.58013  Hirsch, M.W.; Pugh, C.C.; Shub, M., Invariant manifolds, Lecture notes in math., vol. 583, (1977), Springer-Verlag Berlin, New York · Zbl 0355.58009  Holmer, J.; Roudenko, S., A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. math. phys., 282, 2, 435-467, (2008) · Zbl 1155.35094  Ibrahim, S.; Masmoudi, N.; Nakanishi, K., Scattering threshold for the focusing nonlinear Klein-Gordon equation, preprint · Zbl 1270.35132  Jörgens, K., Das anfangswertproblem im grossen für eine klasse nichtlinearer wellengleichungen, Math. Z., 77, 295-308, (1961) · Zbl 0111.09105  Karageorgis, P.; Strauss, W., Instability of steady states for nonlinear wave and heat equations, J. differential equations, 241, 1, 184-205, (2007) · Zbl 1130.35015  Kenig, C.; Merle, F., Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. math., 166, 3, 645-675, (2006) · Zbl 1115.35125  Kenig, C.; Merle, F., Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta math., 201, 2, 147-212, (2008) · Zbl 1183.35202  Krieger, J.; Schlag, W., Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. amer. math. soc., 19, 4, 815-920, (2006) · Zbl 1281.35077  Krieger, J.; Schlag, W., On the focusing critical semi-linear wave equation, Amer. J. math., 129, 3, 843-913, (2007) · Zbl 1219.35144  Li, C.; Wiggins, S., Invariant manifolds and fibrations for perturbed nonlinear Schrödinger equations, Appl. math. sci., vol. 128, (1997), Springer-Verlag New York · Zbl 0897.35070  Morawetz, C.S.; Strauss, W.A., Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. pure appl. math., 25, 1-31, (1972) · Zbl 0228.35055  K. Nakanishi, W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in $$\mathbb{R}^3$$, preprint, 2010. · Zbl 1237.35148  Payne, L.E.; Sattinger, D.H., Saddle points and instability of nonlinear hyperbolic equations, Israel J. math., 22, 3-4, 273-303, (1975) · Zbl 0317.35059  Pecher, H., Low energy scattering for nonlinear Klein-Gordon equations, J. funct. anal., 63, 1, 101-122, (1985) · Zbl 0588.35061  Schlag, W., Stable manifolds for an orbitally unstable nonlinear Schrödinger equation, Ann. of math. (2), 169, 1, 139-227, (2009) · Zbl 1180.35490  Segal, I.E., The global Cauchy problem for a relativistic scalar field with power interaction, Bull. soc. math. France, 91, 129-135, (1963) · Zbl 0178.45403  Strauss, W.A., Existence of solitary waves in higher dimensions, Comm. math. phys., 55, 2, 149-162, (1977) · Zbl 0356.35028  Strauss, W.A., Nonlinear wave equations, CBMS reg. conf. ser. math., vol. 73, (1989), American Mathematical Society Providence, RI, published for the Conference Board of the Mathematical Sciences, Washington, DC  Vanderbauwhede, A., Centre manifolds, normal forms and elementary bifurcations, (), 89-169 · Zbl 0677.58001  Yajima, K., The $$W^{k, p}$$-continuity of wave operators for Schrödinger operators, J. math. soc. Japan, 47, 3, 551-581, (1995) · Zbl 0837.35039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.