×

zbMATH — the first resource for mathematics

On the formation of singularities in the critical \(O(3)\) \(\sigma \)-model. (English) Zbl 1213.35392
The authors study a catastrophic instability in the (2+1)-dimensional \(O(3)\) sigma model (also known as the wave map flow from (2+1)-dimensional Minkowski space into the sphere \(\mathbb S^2\)). They establish rigorously and constructively the existence of a set of smooth initial data resulting in a dynamic finite time formation of singularities. The construction and analysis are done in the context of the \(k\)-equivariant symmetry reduction and the maps are restricted to homotopy class \(k\geq 4\). The authors uncover an energy concentration mechanism that is essentially due to a resonant self-focusing (shrinking) of a corresponding harmonic map. It is shown that the phenomenon is generic (e.g. in certain Sobolev spaces) in that it persists under small perturbations of initial data, while the resulting blowup is bounded by a log-modified self-similar asymptotic.

MSC:
35Q75 PDEs in connection with relativity and gravitational theory
35B35 Stability in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI Link arXiv
References:
[1] A. A. Belavin and A. M. Polyakov, ”Metastable states of two-dimensional isotropic ferromagnets (Russian),” JETP Lett., vol. 22, pp. 245-247, 1975.
[2] P. Bizoń, T. Chmaj, and Z. Tabor, ”Formation of singularities for equivariant \((2+1)\)-dimensional wave maps into the 2-sphere,” Nonlinearity, vol. 14, iss. 5, pp. 1041-1053, 2001. · Zbl 0988.35010 · doi:10.1088/0951-7715/14/5/308 · arxiv:math-ph/0011005
[3] P. Bizoń, Y. N. Ovchinnikov, and I. M. Sigal, ”Collapse of an instanton,” Nonlinearity, vol. 17, iss. 4, pp. 1179-1191, 2004. · Zbl 1059.35081 · doi:10.1088/0951-7715/17/4/003 · arxiv:math-ph/0307026
[4] E. B. Bogomol’nyui, ”The stability of classical solutions,” Jadernaja Fiz., vol. 24, iss. 4, pp. 861-870, 1976.
[5] V. S. Buslaev and G. S. Perelman, ”Scattering for the nonlinear Schrödinger equation: states that are close to a soliton,” Algebra i Analiz, vol. 4, iss. 6, pp. 63-102, 1992. · Zbl 0853.35112
[6] T. Cazenave, J. Shatah, and S. A. Tahvildar-Zadeh, ”Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields,” Ann. Inst. H. Poincaré Phys. Théor., vol. 68, iss. 3, pp. 315-349, 1998. · Zbl 0918.58074 · numdam:AIHPA_1998__68_3_315_0 · eudml:76787
[7] K. Chang, W. Y. Ding, and R. Ye, ”Finite-time blow-up of the heat flow of harmonic maps from surfaces,” J. Differential Geom., vol. 36, iss. 2, pp. 507-515, 1992. · Zbl 0765.53026 · projecteuclid.org
[8] Y. M. Chen and M. Struwe, ”Existence and partial regularity results for the heat flow for harmonic maps,” Math. Z., vol. 201, iss. 1, pp. 83-103, 1989. · Zbl 0652.58024 · doi:10.1007/BF01161997 · eudml:174037
[9] D. Christodoulou and S. A. Tahvildar-Zadeh, ”On the regularity of spherically symmetric wave maps,” Comm. Pure Appl. Math., vol. 46, iss. 7, pp. 1041-1091, 1993. · Zbl 0744.58071 · doi:10.1002/cpa.3160460705
[10] D. Christodoulou and S. A. Tahvildar-Zadeh, ”On the asymptotic behavior of spherically symmetric wave maps,” Duke Math. J., vol. 71, iss. 1, pp. 31-69, 1993. · Zbl 0791.58105 · doi:10.1215/S0012-7094-93-07103-7
[11] R. Côte, ”Instability of nonconstant harmonic maps for the \((1+2)\)-dimensional equivariant wave map system,” Internat. Math. Res. Not., iss. 57, pp. 3525-3549, 2005. · Zbl 1101.35055 · doi:10.1155/IMRN.2005.3525
[12] J. Eells Jr. and J. H. Sampson, ”Harmonic mappings of Riemannian manifolds,” Amer. J. Math., vol. 86, pp. 109-160, 1964. · Zbl 0122.40102 · doi:10.2307/2373037
[13] R. T. Glassey, ”On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations,” J. Math. Phys., vol. 18, iss. 9, pp. 1794-1797, 1977. · Zbl 0372.35009 · doi:10.1063/1.523491
[14] J. F. Grotowski and J. Shatah, ”Geometric evolution equations in critical dimensions,” Calc. Var. Partial Differential Equations, vol. 30, iss. 4, pp. 499-512, 2007. · Zbl 1127.58003 · doi:10.1007/s00526-007-0100-2
[15] F. Hélein, Harmonic Maps, Conservation Laws and Moving Frames, Second ed., Cambridge: Cambridge Univ. Press, 2002. · Zbl 1010.58010
[16] F. Hélein, Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems, Basel: Birkhäuser, 2001. · Zbl 1158.53301
[17] J. Isenberg and S. L. Liebling, ”Singularity formation in \(2+1\) wave maps,” J. Math. Phys., vol. 43, iss. 1, pp. 678-683, 2002. · Zbl 1052.58032 · doi:10.1063/1.1418717 · arxiv:math-ph/0106029
[18] S. Klainerman and S. Selberg, ”Remark on the optimal regularity for equations of wave maps type,” Comm. Partial Differential Equations, vol. 22, iss. 5-6, pp. 901-918, 1997. · Zbl 0884.35102 · doi:10.1080/03605309708821288
[19] J. Krieger, ”Global regularity of wave maps from \(\mathbb R^{2+1}\) to \(H^2\). Small energy,” Comm. Math. Phys., vol. 250, iss. 3, pp. 507-580, 2004. · Zbl 1099.58010 · doi:10.1007/s00220-004-1088-5
[20] J. Krieger, ”Stability of spherically symmetric wave maps,” Mem. Amer. Math. Soc., vol. 181, iss. 853, p. viii, 2006. · Zbl 1387.35392
[21] J. Krieger and W. Schlag, ”On the focusing critical semi-linear wave equation,” Amer. J. Math., vol. 129, iss. 3, pp. 843-913, 2007. · Zbl 1219.35144 · doi:10.1353/ajm.2007.0021
[22] J. Jost, Riemannian Geometry and Geometric Analysis, Fourth ed., New York: Springer-Verlag, 2005. · Zbl 1083.53001 · doi:10.1007/3-540-28891-0
[23] R. A. Leese, M. Peyrard, and W. J. Zakrzewski, ”Soliton stability in the \({ O}(3) \sigma\)-model in \((2+1)\) dimensions,” Nonlinearity, vol. 3, iss. 2, pp. 387-412, 1990. · Zbl 0721.35068 · doi:10.1088/0951-7715/3/2/007 · stacks.iop.org
[24] J. M. Linhart and L. A. Sadun, ”Fast and slow blowup in the \(S^2\) \(\sigma\)-model and the \((4+1)\)-dimensional Yang-Mills model,” Nonlinearity, vol. 15, iss. 2, pp. 219-238, 2002. · Zbl 1006.81052 · doi:10.1088/0951-7715/15/2/301 · arxiv:math-ph/0105024
[25] H. A. Levine, ”Instability and nonexistence of global solutions to nonlinear wave equations of the form \(Pu_{tt}=-Au+\mathcalF(u)\),” Trans. Amer. Math. Soc., vol. 192, pp. 1-21, 1974. · Zbl 0288.35003 · doi:10.2307/1996814
[26] N. Manton and P. Sutcliffe, Topological Solitons, Cambridge: Cambridge Univ. Press, 2004. · Zbl 1100.37044 · doi:10.1017/CBO9780511617034
[27] Y. Martel and F. Merle, ”Blow up in finite time and dynamics of blow up solutions for the \(L^2\)-critical generalized KdV equation,” J. Amer. Math. Soc., vol. 15, iss. 3, pp. 617-664, 2002. · Zbl 0996.35064 · doi:10.1090/S0894-0347-02-00392-2
[28] F. Merle and P. Raphael, ”The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation,” Ann. of Math., vol. 161, iss. 1, pp. 157-222, 2005. · Zbl 1185.35263 · doi:10.4007/annals.2005.161.157
[29] B. Piette and W. J. Zakrzewski, ”Shrinking of solitons in the \((2+1)\)-dimensional \(S^2\) sigma model,” Nonlinearity, vol. 9, iss. 4, pp. 897-910, 1996. · Zbl 0895.58030 · doi:10.1088/0951-7715/9/4/005
[30] J. Shatah, ”Weak solutions and development of singularities of the \({ SU}(2)\) \(\sigma\)-model,” Comm. Pure Appl. Math., vol. 41, iss. 4, pp. 459-469, 1988. · Zbl 0686.35081 · doi:10.1002/cpa.3160410405
[31] J. Shatah and A. Tahvildar-Zadeh, ”Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds,” Comm. Pure Appl. Math., vol. 45, iss. 8, pp. 947-971, 1992. · Zbl 0769.58015 · doi:10.1002/cpa.3160450803
[32] J. Shatah and S. A. Tahvildar-Zadeh, ”On the Cauchy problem for equivariant wave maps,” Comm. Pure Appl. Math., vol. 47, iss. 5, pp. 719-754, 1994. · Zbl 0811.58059 · doi:10.1002/cpa.3160470507
[33] M. Struwe, ”Radially symmetric wave maps from \((1+2)\)-dimensional Minkowski space to the sphere,” Math. Z., vol. 242, iss. 3, pp. 407-414, 2002. · Zbl 1052.58034 · doi:10.1007/s002090100345
[34] M. Struwe, ”Radially symmetric wave maps from \((1+2)\)-dimensional Minkowski space to general targets,” Calc. Var. Partial Differential Equations, vol. 16, iss. 4, pp. 431-437, 2003. · Zbl 1039.58033 · doi:10.1007/s00526-002-0156-y
[35] M. Struwe, ”Equivariant wave maps in two space dimensions,” Comm. Pure Appl. Math., vol. 56, iss. 7, pp. 815-823, 2003. · Zbl 1033.53019 · doi:10.1002/cpa.10074
[36] T. Tao, ”Global regularity of wave maps. II. Small energy in two dimensions,” Comm. Math. Phys., vol. 224, iss. 2, pp. 443-544, 2001. · Zbl 1020.35046 · doi:10.1007/PL00005588 · arxiv:math/0011173
[37] D. Tataru, ”On global existence and scattering for the wave maps equation,” Amer. J. Math., vol. 123, iss. 1, pp. 37-77, 2001. · Zbl 0979.35100 · doi:10.1353/ajm.2001.0005 · muse.jhu.edu
[38] D. Tataru, ”Rough solutions for the wave maps equation,” Amer. J. Math., vol. 127, iss. 2, pp. 293-377, 2005. · Zbl 1330.58021 · doi:10.1353/ajm.2005.0014 · muse.jhu.edu
[39] M. I. Weinstein, ”Modulational stability of ground states of nonlinear Schrödinger equations,” SIAM J. Math. Anal., vol. 16, iss. 3, pp. 472-491, 1985. · Zbl 0583.35028 · doi:10.1137/0516034
[40] M. I. Weinstein, ”Lyapunov stability of ground states of nonlinear dispersive evolution equations,” Comm. Pure Appl. Math., vol. 39, iss. 1, pp. 51-67, 1986. · Zbl 0594.35005 · doi:10.1002/cpa.3160390103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.