zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Weighted norm inequalities, off-diagonal estimates and elliptic operators. I: General operator theory and weights. (English) Zbl 1213.42030
Summary: This is the first part of a series of four articles. In this work, we are interested in weighted norm estimates. We put the emphasis on two results of different nature: one is based on a good-$\lambda$ inequality with two parameters and the other uses the Calderón-Zygmund decomposition. These results apply well to singular “non-integral” operators and their commutators with bounded mean oscillation functions. Singular means that they are of order 0, “non-integral” that they do not have an integral representation by a kernel with size estimates, even rough, so that they may not be bounded on all $L^p$ spaces for $1<p<\infty$. Pointwise estimates are then replaced by appropriate localized $L^p$ - $L^q$ estimates. We obtain weighted $L^p$ estimates for a range of $p$ that is different from $(1,\infty )$ and isolate the right class of weights. In particular, we prove an extrapolation theorem “à la Rubio de Francia” for such a class and thus vector-valued estimates.

42B20Singular and oscillatory integrals, several variables
47F05Partial differential operators
Full Text: DOI
[1] Arendt, W.; Elst, A. F. M. Ter: Gaussian estimates for second order operators with boundary condition. J. operator theory 38, 87-130 (1997) · Zbl 0879.35041
[2] Auscher, P.: On lp estimates for square roots of second order elliptic operators on rn. Publ. mat. 48, No. 1, 159-186 (2004) · Zbl 1107.42003
[3] Auscher, P.: On necessary and sufficient conditions for lp estimates of Riesz transform associated elliptic operators on rn and related estimates. Mem. amer. Math. soc. 186, No. 871 (2007) · Zbl 1221.42022
[4] P. Auscher, B. Ben Ali, Maximal inequalities and Riesz transform estimates on Lp spaces for Schrödinger operators with nonnegative potentials, preprint, University of Orsay, 2006. Available on ArXiv
[5] Auscher, P.; Coulhon, T.: Riesz transforms on manifolds and Poincaré inequalities. Ann. sc. Norm. super. Pisa cl. Sci. (5) 4, 1-25 (2005) · Zbl 1116.58023
[6] Auscher, P.; Hofmann, S.; Lacey, M.; Intosh, A. M. C.; Tchamitchian, Ph.: The solution of the Kato square root problem for second order elliptic operators on rn. Ann. of math. (2) 156, 633-654 (2002) · Zbl 1128.35316
[7] Auscher, P.; Coulhon, T.; Duong, X. T.; Hofmann, S.: Riesz transforms on manifolds and heat kernel regularity. Ann. sci. ENS Paris 37, No. 6, 911-957 (2004) · Zbl 1086.58013
[8] Auscher, P.; Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part II: Off-diagonal estimates on spaces of homogeneous type · Zbl 1210.42023
[9] Auscher, P.; Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators. J. funct. Anal. 241, 703-746 (2006) · Zbl 1213.42029
[10] Auscher, P.; Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part IV: Riesz transforms on manifolds and weights · Zbl 1214.58010
[11] Auscher, P.; Tchamitchian, Ph.: Square root problem for divergence operators and related topics. Astérisque 249 (1998) · Zbl 0909.35001
[12] Auscher, P.; Tchamitchian, Ph.: On square roots of elliptic second order divergence form operators on strongly Lipschitz domains: lp theory. Math. ann. 320, No. 3, 577-623 (2001) · Zbl 1161.35350
[13] Bakry, D.: Étude des transformations de Riesz dans LES variétés riemanniennes à courbure de Ricci minorée. Lecture notes in math. 1247, 137-172 (1987)
[14] Bennett, C.; Sharpley, R. C.: Interpolation of operators. Pure and appl. Math. 129 (1988) · Zbl 0647.46057
[15] Blunck, S.; Kunstmann, P.: Calderón-Zygmund theory for non-integral operators and the h\infty-functional calculus. Rev. mat. Iberoamericana 19, No. 3, 919-942 (2003) · Zbl 1057.42010
[16] Blunck, S.; Kunstmann, P.: Weak-type (p,p) estimates for Riesz transforms. Math. Z. 247, No. 1, 137-148 (2004) · Zbl 1138.35315
[17] Burkholder, D. L.; Gundy, R. F.: Extrapolation and interpolation of quasilinear operators on martingales. Acta math. 124, 249-304 (1970) · Zbl 0223.60021
[18] Caffarelli, L. A.; Peral, I.: On W1,p estimates for elliptic equations in divergence form. Comm. pure appl. Math. 51, 1-21 (1998) · Zbl 0906.35030
[19] Coulhon, T.; Duong, X. T.: Riesz transforms for 1\leqslantp\leqslant2. Trans. amer. Math. soc. 351, 1151-1169 (1999) · Zbl 0973.58018
[20] Calderón, C. P.; Milman, M.: Interpolation of Sobolev spaces. The real method. Indiana univ. Math. J. 32, No. 6, 801-808 (1983) · Zbl 0535.46048
[21] Calderón, A. P.; Zygmund, A.: On the existence of certain singular integrals. Acta math. 88, 85-139 (1952) · Zbl 0047.10201
[22] Chang, S. -Y.A.; Wilson, J. M.; Wolff, T. H.: Some weighted norm inequalities concerning the Schrödinger operators. Comment. math. Helv. 60, 217-246 (1985) · Zbl 0575.42025
[23] Christ, M.: Lectures on singular integral operators. CBMS reg. Conf. ser. Math. 77 (1990)
[24] Coifman, R.: Distribution function inequalities for singular integrals. Proc. natl. Acad. sci. USA 69, 2838-2839 (1972) · Zbl 0243.44006
[25] Coifman, R.; Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia math. 51, 241-250 (1974) · Zbl 0291.44007
[26] Coifman, R. R.; Weiss, G.: Analyse harmonique non-conmutative sur certains espaces homogènes. Lecture notes in math. 242 (1971)
[27] Cruz-Uribe, D.; Martell, J. M.; Pérez, C.: Extrapolation results for A$\infty $weights and applications. J. funct. Anal. 213, 412-439 (2004) · Zbl 1052.42016
[28] Curbera, G.; García-Cuerva, J.; Martell, J. M.; Pérez, C.: Extrapolation with weights, rearrangement invariant function spaces, modular inequalities and applications to singular integrals. Adv. math. 203, No. 1, 256-318 (2006) · Zbl 1098.42017
[29] Dahlberg, B.: Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain. Studia math. 67, No. 3, 297-314 (1980) · Zbl 0449.31002
[30] Dahlberg, B.; Jerison, D.; Kenig, C.: Area integral estimates for elliptic differential operators with nonsmooth coefficients. Ark. mat. 22, No. 1, 97-108 (1984) · Zbl 0537.35025
[31] Duoandikoetxea, J.: Fourier analysis. Grad stud. Math. 29 (2000)
[32] Duong, X. T.; Intosh, A. M. C.: Singular integral operators with non-smooth kernels on irregular domains. Rev. mat. Iberoamericana 15, 233-265 (1999) · Zbl 0980.42007
[33] Duong, X. T.; Robinson, D.: Semigroup kernels, Poisson bounds and holomorphic functional calculus. J. funct. Anal. 142, 89-128 (1996) · Zbl 0932.47013
[34] Duong, X. T.; Yan, L.: Commutators of BMO functions and singular integral operators with non-smooth kernels. Bull. austral. Math. soc. 67, No. 2, 187-200 (2003) · Zbl 1023.42010
[35] Fefferman, C.: Inequalities for strongly singular convolution operators. Acta math. 124, 9-36 (1970) · Zbl 0188.42601
[36] Fefferman, C.; Stein, E. M.: Hp spaces in several variables. Acta math. 129, 137-193 (1972) · Zbl 0257.46078
[37] Franchi, B.; Hajłasz, P.; Koskela, P.: Definitions of Sobolev classes on metric spaces. Ann. inst. Fourier (Grenoble) 49, No. 6, 1903-1924 (1999) · Zbl 0938.46037
[38] García-Cuerva, J.: An extrapolation theorem in the theory of ap-weights. Proc. amer. Math. soc. 87, 422-426 (1983) · Zbl 0542.41011
[39] García-Cuerva, J.; De Francia, J. L. Rubio: Weighted norm inequalities and related topics. North holland math. Stud. 116 (1985) · Zbl 0578.46046
[40] Grafakos, L.: Classical and modern Fourier analysis. (2004) · Zbl 1148.42001
[41] Grafakos, L.; Martell, J. M.: Extrapolation of operators of many variables and applications. J. geom. Anal. 14, No. 1, 19-46 (2004) · Zbl 1049.42007
[42] Gundy, R. F.; Wheeden, R. L.: Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh-Paley series. Studia math. 49, 101-118 (1973) · Zbl 0245.28003
[43] Hebisch, W.: A multiplier theorem for Schrödinger operators. Colloq. math. 60/61, 659-664 (1990) · Zbl 0779.35025
[44] Hofmann, S.; Martell, J. M.: Lp bounds for Riesz transforms and square roots associated to second order elliptic operators. Publ. mat. 47, 497-515 (2003) · Zbl 1074.35031
[45] Hörmander, L.: Estimates for translation invariant operators in lp spaces. Acta math. 104, 93-140 (1960) · Zbl 0093.11402
[46] Jerison, D.; Kenig, C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. funct. Anal. 130, 161-219 (1995) · Zbl 0832.35034
[47] Johnson, R.; Neugebauer, C. J.: Change of variable results for ap and reverse hölder rhr-classes. Trans. amer. Math. soc. 328, No. 2, 639-666 (1991) · Zbl 0756.42015
[48] J.M. Martell, Desigualdades con pesos en el Análisis de Fourier: de los espacios de tipo homogéneo a las medidas no doblantes, Ph.D. Thesis, Universidad Autónoma de Madrid, 2001
[49] Martell, J. M.: Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications. Studia math. 161, 113-145 (2004) · Zbl 1044.42019
[50] Martell, J. M.; Pérez, C.; Trujillo-González, R.: Lack of natural weighted estimates for some singular integral operators. Trans. amer. Math. soc. 357, No. 1, 385-396 (2005) · Zbl 1072.42014
[51] Mendez, O.; Mitrea, M.: Complex powers of the Neumann Laplacian in Lipschitz domains. Math. nachr. 223, 77-88 (2001) · Zbl 0981.35014
[52] Meyer, Y.: Ondelettes et opérateurs, volumes 1 & 2. (1990)
[53] Muckenhoupt, B.; Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. amer. Math. soc. 192, 261-274 (1974) · Zbl 0289.26010
[54] Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. funct. Anal. 128, 163-185 (1995) · Zbl 0831.42010
[55] Pérez, C.; Trujillo-Gonzalez, R.: Sharp weighted estimates for multilinear commutators. J. London math. Soc. (2) 65, 672-692 (2002) · Zbl 1012.42008
[56] De Francia, J. L. Rubio: Factorization theory and ap weights. Amer. J. Math. 106, 533-547 (1984) · Zbl 0558.42012
[57] Z. Shen, The Lp Dirichlet problem for the elliptic system and polyharmonic equation on Lipschitz domains, preprint, 2004
[58] Shen, Z.: Bounds of Riesz transforms on lp spaces for second order elliptic operators. Ann. inst. Fourier 55, No. 1, 173-197 (2005) · Zbl 1068.47058
[59] Stein, E. M.: Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals. (1993) · Zbl 0821.42001
[60] Strömberg, J. O.; Torchinsky, A.: Weighted Hardy spaces. Lecture notes in math. 1381 (1989) · Zbl 0676.42021
[61] Wilson, J. M.: A sharp inequality for the square function. Duke math. J. 55, 879-887 (1987) · Zbl 0639.42017