×

Breaking the duality in the return times theorem. (English) Zbl 1213.42064

Summary: We prove Bourgain’s return times theorem for a range of exponents \(p\) and \(q\) that are outside the duality range. An oscillation result is used to prove hitherto unknown almost-everywhere convergence for the signed average analogue of Bourgain’s averages

MSC:

42B25 Maximal functions, Littlewood-Paley theory
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] I. Assani, The Wiener-Wintner property for the helical transform of the shift on \([0,1]^ Z\) , Ergodic Theory Dynam. Systems 12 (1992), 659–672. · Zbl 0784.58036
[2] -, Strong laws for weighted sums of independent identically distributed random variables , Duke Math. J. 88 (1997), 217–246. · Zbl 0883.60023
[3] -, A weighted pointwise ergodic theorem , Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), 139–150. · Zbl 0902.28011
[4] -, Wiener-Wintner Dynamical Systems , Ergodic Theory Dynam. Systems 23 (2003), 1637–1654. · Zbl 1128.37300
[5] -, “Duality and the one-sided ergodic Hilbert transform” in Chapel Hill Ergodic Theory Workshops ( Chapel Hill, N.C., 2002, 2003 ), Contemp. Math. 356 , Amer. Math. Soc., Providence, 2004, 81–90. · Zbl 1061.60025
[6] I. Assani, Z. Buczolich, and R. D. Mauldin, An \(L^1\) counting problem in ergodic theory , J. Anal. Math. 95 (2005), 221–241. · Zbl 1110.28013
[7] J. Baxter, R. Jones, M. Lin, and J. Olsen, SLLN for weighted independent identically distributed random variables , J. Theoret. Probab. 17 (2004), 165–181. · Zbl 1050.60031
[8] G. D. Birkhoff, Proof of the ergodic theorem , Proc. Nat. Acad. Sci. U.S.A. 17 (1931), 656–660. · Zbl 0003.25602
[9] J. Bourgain, Temps de retour pour les systèmes dynamiques , C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 483–485. · Zbl 0655.58022
[10] -, Pointwise ergodic theorems for arithmetic sets , with appendix “Appendix on return-time sequences” by J. Bourgain, H. Furstenberg, Y. Katznelson, and D. S. Ornstein, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5–45. · Zbl 0705.28008
[11] -, Return times of dynamical systems , unpublished manuscript.
[12] J. Bourgain, H. Furstenberg, Y. Katznelson, and D. S. Ornstein, Appendix on return-times sequences , appendix to Pointwise ergodic theorems for arithmetic sets by J. Bourgain, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 42–45.
[13] J. Bourgain, S. Kostyukovsky, and A. Olevskiĭ, A remark on a maximal operator for Fourier multipliers , Real Anal. Exchange 26 (2000/01), 901–904. · Zbl 1022.42004
[14] L. Carleson, On convergence and growth of partial sumas of Fourier series , Acta Math. 116 (1966), 135–157. · Zbl 0144.06402
[15] J.-P. Conze, “Convergence des moyennes ergodiques pour des sous-suites” in Contributions au calcul des probabilités , Bull. Soc. Math. France Mém. 35 , Suppl. au Bull. Soc. Math. France 101 , Soc. Math. France, Montrouge, 1973, 7–15. · Zbl 0285.28017
[16] M. Cotlar, A unified theory of Hilbert transforms and ergodic theorems , Rev. Mat. Cuyana 1 (1955), 105–167. · Zbl 0071.33402
[17] C. Demeter, Pointwise convergence of the ergodic bilinear Hilbert transform , preprint,\arxivmath/0601277v1[math.CA] · Zbl 1175.37013
[18] C. Demeter, T. Tao, and C. Thiele, Maximal multilinear operators , preprint,\arxivmath/0510581v1[math.CA] · Zbl 1268.42034
[19] C. Fefferman, Pointwise convergence of Fourier series , Ann. of Math. (2) 98 (1973), 551–571. JSTOR: · Zbl 0268.42009
[20] C. Fefferman and E. M. Stein, Some maximal inequalities , Amer. J. Math. 93 (1971), 107–115. JSTOR: · Zbl 0222.26019
[21] P. R. Halmos, Lectures on Ergodic Theory , Chelsea, New York, 1960. · Zbl 0117.10502
[22] M. T. Lacey, The bilinear maximal functions map into \(L^ p\) for \(2/3<p\leq1\) , Ann. of Math. (2) 151 (2000), 35–57. JSTOR: · Zbl 0967.47031
[23] M. T. Lacey and E. Terwilleger, Wiener-Wintner for Hilbert transform , preprint,\arxivmath/0601192v1[math.CA] · Zbl 1214.42003
[24] M. T. Lacey and C. Thiele, \(L^ p\) estimates on the bilinear Hilbert transform for \(2<p<\infty\) , Ann. of Math. (2) 146 (1997), 693–724. JSTOR: · Zbl 0914.46034
[25] -, A proof of boundedness of the Carleson operator , Math. Res. Lett. 7 (2000), 361–370. · Zbl 0966.42009
[26] D. LéPingle, La variation d’ordre \(p\) des semi-martingales , Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), 295–316. · Zbl 0325.60047
[27] C. Muscalu, T. Tao, and C. Thiele, Multi-linear operators given by singular multipliers , J. Amer. Math. Soc. 15 (2002), 469–496. JSTOR: · Zbl 0994.42015
[28] D. J. Rudolph, A joinings proof of Bourgain’s return time theorem , Ergodic Theory Dynam. Systems 14 (1994), 197–203. · Zbl 0799.28010
[29] -, Fully generic sequences and a multiple-term return-times theorem , Invent. Math. 131 (1998), 199–228. · Zbl 0910.28013
[30] C. Thiele, On the Bilinear Hilbert Transform , Habilitationsschrift, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 1998.
[31] N. Wiener and A. Wintner, Harmonic analysis and ergodic theory , Amer. J. Math. 63 (1941), 415–426. JSTOR: · Zbl 0025.06504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.