×

The intrinsic square function. (English) Zbl 1213.42072

Summary: We show that the Lusin area function and essentially all of its real-variable generalizations are pointwise dominated by an “intrinsic” square function, and that this latter function is, for all practical purposes, no larger than a “generic” square function.

MSC:

42B25 Maximal functions, Littlewood-Paley theory
PDFBibTeX XMLCite
Full Text: DOI Euclid EuDML

References:

[1] Chang, S.-Y. A., Wilson, J. M. and Wolff, T. H.: Some weighted norm inequalities concerning the Schrödinger operators. Comment. Math. Helv. 60 (1985), 217-246. · Zbl 0575.42025 · doi:10.1007/BF02567411
[2] Chanillo, S. and Wheeden, R. L.: Some weighted norm inequalities for the area integral. Indiana Univ. Math. J. 36 (1987), 277-294. · Zbl 0598.34019 · doi:10.1512/iumj.1987.36.36016
[3] Fefferman, C. and Stein, E. M.: Some maximal inequalities. Amer. J. Math. 93 (1971), 107-115. JSTOR: · Zbl 0222.26019 · doi:10.2307/2373450
[4] Fefferman, R.: Private communication.
[5] Frazier, M., Jawerth, B. and Weiss, G.: Littlewood-Paley theory and the study of function spaces . CBMS Regional Conference Series in Mathematics, 79 . American Mathematical Society, Providence, RI, 1991. · Zbl 0757.42006
[6] Stein, E. M.: Singular integrals and differentiability properties of functions . Princeton Mathematical Series, 30 . Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[7] Uchiyama, A.: A constructive proof of the Fefferman-Stein decomposition of \(BMO(\mathbb R^ n)\). Acta Math. 148 (1982), 215-241. · Zbl 0514.46018 · doi:10.1007/BF02392729
[8] Wilson, M.: Weighted Littlewood-Paley Theory and Exponential-Square Integrability . Lecture Notes in Mathematics Series 1924 . Springer-Verlag, New York, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.