×

The essential norm of the generalized Hankel operators on the Bergman space of the unit ball in \(C^{n}\). (English) Zbl 1213.47032

Summary: In [Pac. J. Math. 161, No. 1, 155–184 (1993; Zbl 0791.46019)], M. M. Peloso introduced a kind of operators on the Bergman space \(A^2(B)\) of the unit ball that generalizes the classical Hankel operator. In this paper, we estimate the essential norm of the generalized Hankel operators on the Bergman space \(A^p(B)\) \((p >1)\) of the unit ball and give an equivalent form of the essential norm.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
32A36 Bergman spaces of functions in several complex variables

Citations:

Zbl 0791.46019
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] J. Arazy, S. D. Fisher, and J. Peetre, “Hankel operators on weighted Bergman spaces,” American Journal of Mathematics, vol. 110, no. 6, pp. 989-1054, 1988. · Zbl 0669.47017 · doi:10.2307/2374685
[2] S. Axler, “The Bergman space, the Bloch space, and commutators of multiplication operators,” Duke Mathematical Journal, vol. 53, no. 2, pp. 315-332, 1986. · Zbl 0633.47014 · doi:10.1215/S0012-7094-86-05320-2
[3] M. M. Peloso, “Besov spaces, mean oscillation, and generalized Hankel operators,” Pacific Journal of Mathematics, vol. 161, no. 1, pp. 155-184, 1993. · Zbl 0791.46019 · doi:10.2140/pjm.1993.161.155
[4] K. Stroethoff, “Compact Hankel operators on the Bergman spaces of the unit ball and polydisk in Cn,” Journal of Operator Theory, vol. 23, no. 1, pp. 153-170, 1990. · Zbl 0723.47018
[5] K. H. Zhu, “Hilbert-Schmidt Hankel operators on the Bergman space,” Proceedings of the American Mathematical Society, vol. 109, no. 3, pp. 721-730, 1990. · Zbl 0731.47028 · doi:10.2307/2048212
[6] L. Luo and S. Ji-Huai, “Generalized Hankel operators on the Bergman space of the unit ball,” Complex Variables. Theory and Application, vol. 44, no. 1, pp. 55-71, 2001. · Zbl 1040.47022
[7] K. Zhu, Spaces of Holomorphic Functions in the Unit ball, vol. 226, Springer, New York, NY, USA, 2005. · Zbl 1067.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.