×

On the holonomy of Lorentzian metrics. (English) Zbl 1213.53063

Summary: Indecomposable Lorentzian holonomy algebras, except \(\mathfrak{so}(n,1)\) and \(\{0\}\), are not semi-simple; they possibly belong to four families of algebras. All four families are realized as families of holonomy algebras: we describe the corresponding set of germs of metrics in each case.

MSC:

53C29 Issues of holonomy in differential geometry
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Bérard Bergery (L.), Ikemakhen (A.).— On the Holonomy of Lorentzian Manifolds, Proc. of Symposia in Pure Mathematics54, Part 2, p. 27-39 (1993). · Zbl 0807.53014
[2] Berger (M.).— Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. (French) Bull. Soc. Math. France83, p. 279-330 (1955). · Zbl 0068.36002
[3] Berger (M.).— Les espaces symétriques non compacts, Ann. Sci. Ecol. Norm. Sup.74, p. 85-177 (1957). · Zbl 0093.35602
[4] Besse (A.L.).— Einstein Manifolds. Springer Verlag — Berlin, Heidelberg (1987). · Zbl 0613.53001
[5] Bryant (R.).— Classical, exceptional, and exotic holonomies: A status report, Besse, A. L. (ed.), Actes de la table ronde de géométrie différentielle en l’honneur de Marcel Berger, Luminy, France, 12-18 juillet 1992. Soc. Math. France. Sémin. Congr.1, p. 93-165 (1996). · Zbl 0882.53014
[6] Boubel (C.).— Sur l’holonomie des variétés pseudo-riemanniennes, Thèse de doctorat, Université Nancy I, France, May 2000.
[7] Boubel (C.), Zeghib (A.).— Isometric actions of Lie subgroups of the Moebius group, Nonlinearity, 17, p. 1677-1688 (2004). · Zbl 1073.53016
[8] Cahen (M.), Parker (M.).— Pseudo-Riemannian symmetric spaces, Memoirs of the American Mathematical Society, 24 (229) (1980). · Zbl 0438.53057
[9] Cartan (E.).— Sur les variétés à connexion affine et la théorie de la relativité généralisée I et II, Ann. Sci. Ecol. Norm. Sup.40, p. 325-412 (1923) and 41, p. 1-25 (1924). · JFM 49.0542.02
[10] Cartan (E.).— Les groupes d’holonomie des espaces généralisés, Acta. Math.48, p. 1-42 (1926). · JFM 52.0723.01
[11] Ebin. (D.G.).— The manifold of Riemannian metrics, 1970 Global Analysis, Proc. of Symposia in Pure Mathematics15, p. 11-40 (1968). · Zbl 0205.53702
[12] Galaev (A.).— Metrics that realize all types of Lorentzian holonomy, preprint, http://arxiv.org/abs/math.DG/0502575. · Zbl 1112.53039
[13] Hano (J.), Ozeki (H.).— On the holonomy group of linear connections, Nagoya Math. J.10, p. 97-100 (1956). · Zbl 0070.38901
[14] Ikemakhen (A.).— Examples of indecomposable non-irreducible Lorentzian manifolds. Ann. Sci. Math. Qué.20, No.1, p. 53-66 (1996). · Zbl 0873.53009
[15] Lascoux (A.), Berger (M.).— Variétés kählériennes compactes. (French) Lecture Notes in Mathematics.154, Berlin-Heidelberg-New York: Springer-Verlag (1970). · Zbl 0205.51702
[16] Leistner (T.).— Towards a classification of Lorentzian holonomy groups, Preprint, 2003, http://arxiv.org/ps/math.DG/0305139 and Part II: Semisimple, non-simple weak-Berger algebras. Preprint, 2003, http://arxiv.org/ps/math.DG/0309274.
[17] Leistner (T.).— Holonomy and Parallel Spinors in Lorentzian Geometry, thesis, Humboldt-Universität zu Berlin (2003). Published by Logos Verlag, Berlin, 2004. · Zbl 1088.53032
[18] de Rham (G.).— Sur la réductibilité d’un espace de Riemann, Comm. Math. Helv.26, p. 328-344 (1952). · Zbl 0048.15701
[19] Di Scala (A.J.), Olmos (C.).— The geometry of homogeneous submanifolds of hyperbolic space, Math. Z.237, No.1, p. 199-209 (2001). · Zbl 0997.53051
[20] Schwachhöfer (L.).— Irreducible holonomy representations, Proceedings of the 20th Winter School “Geometry and Physics” (Srní, 2000). Rend. Circ. Mat. Palermo (2) Suppl. No. 66, p. 59-81 (2001). · Zbl 1037.53034
[21] Schwachhöfer (L.).— Connections with irreducible holonomy representations, Adv. Math. 160, no.1, p. 1-80 (2001). · Zbl 1037.53035
[22] Walker (A.G.).— On parallel fields of partially null vector spaces, Q. J. Math., Oxf. II. Ser. 1, p. 69-79 (sept. 1949). · Zbl 0036.38303
[23] Walker (A.G.).— Canonical form for a riemannian space with a parallel field of null planes, I and II, Q. J. Math., Oxf. II. Ser. 1, p. 69-79 and p. 147-152 (1950). · Zbl 0036.38303
[24] Wu (H.).— Holonomy groups of indefinite metrics, Pacific J. Math.20, p. 351-392 (1967). · Zbl 0149.39603
[25] Zeghib (A.).— Remarks on Lorentz symmetric spaces, Compositio Math., 140, no. 6, p. 1675-1678 (2004). · Zbl 1067.53009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.