zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some coupled fixed point results on partial metric spaces. (English) Zbl 1213.54060
Summary: We give some coupled fixed point results for mappings satisfying different contractive conditions on complete partial metric spaces.

54H25Fixed-point and coincidence theorems in topological spaces
Full Text: DOI EuDML arXiv
[1] T. Gnana Bhaskar and V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and applications,” Nonlinear Analysis: Theory, Methods & Applications, vol. 65, no. 7, pp. 1379-1393, 2006. · Zbl 1106.47047 · doi:10.1016/j.na.2005.10.017
[2] L. Círíc and V. Lakshmikantham, “Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 12, pp. 4341-4349, 2009. · Zbl 1176.54030 · doi:10.1080/07362990903259967
[3] I. Altun, F. Sola, and H. Simsek, “Generalized contractions on partial metric spaces,” Topology and Its Applications, vol. 157, no. 18, pp. 2778-2785, 2010. · Zbl 1207.54052 · doi:10.1016/j.topol.2010.08.017
[4] F. Sabetghadam, H. P. Masiha, and A. H. Sanatpour, “Some coupled fixed point theorems in cone metric spaces,” Fixed Point Theory and Applications, Article ID 125426, 8 pages, 2009. · Zbl 1179.54069 · doi:10.1155/2009/125426 · eudml:45671
[5] H. Aydi, “Some fixed point results in ordered partial metric spaces,” The Journal of Nonlinear Sciences and Applications. In press. · Zbl 06331331
[6] S. G. Matthews, “Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications,” in Annals of the New York Academy of Sciences, vol. 728, pp. 183-197, 1994. · Zbl 0911.54025
[7] S. J. O’Neill, “Two topologies are better than one,” Tech. Rep., University of Warwick, Coventry, UK, 1995, http://www.dcs.warwick.ac.uk/reports/283.html.
[8] S. J. O’Neill, “Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications,” in Annals of the New York Academy of Sciences, vol. 806, pp. 304-315, 1996. · Zbl 0889.54018
[9] S. Oltra and O. Valero, “Banach’s fixed point theorem for partial metric spaces,” Rendiconti dell’Istituto di Matematica dell’Università di Trieste, vol. 36, no. 1-2, pp. 17-26, 2004. · Zbl 1080.54030
[10] S. Romaguera and M. Schellekens, “Partial metric monoids and semivaluation spaces,” Topology and Its Applications, vol. 153, no. 5-6, pp. 948-962, 2005. · Zbl 1084.22002 · doi:10.1016/j.topol.2005.01.023
[11] S. Romaguera and O. Valero, “A quantitative computational model for complete partial metric spaces via formal balls,” Mathematical Structures in Computer Science, vol. 19, no. 3, pp. 541-563, 2009. · Zbl 1172.06003 · doi:10.1017/S0960129509007671
[12] M. P. Schellekens, “The correspondence between partial metrics and semivaluations,” Theoretical Computer Science, vol. 315, no. 1, pp. 135-149, 2004. · Zbl 1052.54026 · doi:10.1016/j.tcs.2003.11.016
[13] O. Valero, “On Banach fixed point theorems for partial metric spaces,” Applied General Topology, vol. 6, no. 2, pp. 229-240, 2005. · Zbl 1087.54020