×

T. E. Harris’s contributions to recurrent Markov processes and stochastic flows. (English) Zbl 1213.60116

Summary: This is a brief survey of T. E. Harris’s work on recurrent Markov processes and on stochastic flows, and of some more recent work in these fields.

MSC:

60J05 Discrete-time Markov processes on general state spaces
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Arnold, L. (1998). Random Dynamical Systems . Springer, Berlin. · Zbl 0906.34001
[2] Arratia, R. A. (1979). Coalescing Brownian motions on the line. Ph.D. thesis, Univ. Wisconsin, Madison.
[3] Baxendale, P. H. (1994). A stochastic Hopf bifurcation. Probab. Theory Related Fields 99 581-616. · Zbl 0801.60046
[4] Baxendale, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15 700-738. · Zbl 1070.60061
[5] Baxendale, P. and Harris, T. E. (1986). Isotropic stochastic flows. Ann. Probab. 14 1155-1179. · Zbl 0606.60014
[6] Baxendale, P. H. and Stroock, D. W. (1988). Large deviations and stochastic flows of diffeomorphisms. Probab. Theory Related Fields 80 169-215. · Zbl 0638.60035
[7] Chung, K. L. (1954). Contributions to the theory of Markov chains. II. Trans. Amer. Math. Soc. 76 397-419. JSTOR: · Zbl 0058.34602
[8] Cranston, M. and Le Jan, Y. (1998). Geometric evolution under isotropic stochastic flow. Electron. J. Probab. 3 36 pp. (electronic). · Zbl 0890.60048
[9] Cranston, M. and Le Jan, Y. (2009). A central limit theorem for isotropic flows. Stochastic Process. Appl. 119 3767-3784. · Zbl 1187.60014
[10] Cranston, M., Scheutzow, M. and Steinsaltz, D. (1999). Linear expansion of isotropic Brownian flows. Electron. Comm. Probab. 4 91-101 (electronic). · Zbl 0938.60048
[11] Cranston, M., Scheutzow, M. and Steinsaltz, D. (2000). Linear bounds for stochastic dispersion. Ann. Probab. 28 1852-1869. · Zbl 1044.60055
[12] Darling, R. W. R. (1987). Constructing nonhomeomorphic stochastic flows. Mem. Amer. Math. Soc. 70 vi+97. · Zbl 0629.60078
[13] Derman, C. (1954). A solution to a set of fundamental equations in Markov chains. Proc. Amer. Math. Soc. 5 332-334. JSTOR: · Zbl 0058.34504
[14] Dimitroff, G. (2006). Some properties of isotropic Brownian and Ornstein-Uhlenbeck flows. Ph.D. dissertation, Technischen Univ. Berlin. Available at . · Zbl 1210.93003
[15] Dimitroff, G. and Scheutzow, M. (2009). Dispersion of volume under the action of isotropic Brownian flows. Stochastic Process. Appl. 119 588-601. · Zbl 1169.60311
[16] Harris, T. E. (1956). The existence of stationary measures for certain Markov processes. In Proc. Third Berkeley Sympos. Math. Statist. Probab. 1954 - 1955, Vol. II 113-124. Univ. California Press, Berkeley. · Zbl 0072.35201
[17] Harris, T. E. (1972). Nearest-neighbor Markov interaction processes on multidimensional lattices. Adv. Math. 9 66-89. · Zbl 0267.60107
[18] Harris, T. E. (1981). Brownian motions on the homeomorphisms of the plane. Ann. Probab. 9 232-254. · Zbl 0457.60013
[19] Harris, T. E. (1984). Coalescing and noncoalescing stochastic flows in R 1 . Stochastic Process. Appl. 17 187-210. · Zbl 0536.60016
[20] Itô, K. (1956). Isotropic random current. In Proc. Third Berkeley Sympos. Math. Statist. Probab. 1954 - 1955, Vol. II 125-132. Univ. California Press, Berkeley.
[21] Khas’minskii, R. (1960). Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Theory Probab. Appl. 5 179-196. · Zbl 0106.12001
[22] Kunita, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics 24 . Cambridge Univ. Press, Cambridge. · Zbl 0743.60052
[23] Le Jan, Y. (1985). On isotropic Brownian motions. Z. Wahrsch. Verw. Gebiete 70 609-620. · Zbl 0576.60072
[24] Le Jan, Y. (1991). Asymptotic properties of isotropic Brownian flows. In Spatial Stochastic Processes. Progress in Probability 19 219-232. Birkhäuser, Boston, MA. · Zbl 0762.60072
[25] Le Jan, Y. and Raimond, O. (2002). Integration of Brownian vector fields. Ann. Probab. 30 826-873. · Zbl 1037.60061
[26] Le Jan, Y. and Raimond, O. (2004). Flows, coalescence and noise. Ann. Probab. 32 1247-1315. · Zbl 1065.60066
[27] Le Jan, Y. and Watanabe, S. (1984). Stochastic flows of diffeomorphisms. In Stochastic Analysis ( Katata/Kyoto , 1982). North-Holland Mathematical Library 32 307-332. North-Holland, Amsterdam. · Zbl 0552.60062
[28] Lee, W. C. (1974). Random stirring of the real line. Ann. Probab. 2 580-592. · Zbl 0288.60094
[29] Lindvall, T. (1992). Lectures on the Coupling Method . Wiley, New York. · Zbl 0058.34504
[30] Maruyama, G. and Tanaka, H. (1959). Ergodic property of N -dimensional recurrent Markov processes. Mem. Fac. Sci. Kochi Univ. Ser. A 13 157-172. · Zbl 0115.36003
[31] Matsumoto, H. and Shigekawa, I. (1985). Limit theorems for stochastic flows of diffeomorphisms of jump type. Z. Wahrsch. Verw. Gebiete 69 507-540. · Zbl 0548.60035
[32] Meyn, S. P. and Tweedie, R. L. (1992). Stability of Markovian processes. I: Criteria for discrete-time chains. Adv. in Appl. Probab. 24 542-574. JSTOR: · Zbl 0757.60061
[33] Meyn, S. P. and Tweedie, R. L. (1993). Generalized resolvents and Harris recurrence of Markov processes. In Doeblin and Modern Probability ( Blaubeuren , 1991). Contemporary Mathematics 149 227-250. Amer. Math. Soc., Providence, RI. · Zbl 0784.60066
[34] Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes. II: Continuous-time processes and sampled chains. Adv. in Appl. Probab. 25 487-517. JSTOR: · Zbl 0781.60052
[35] Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes. III: Foster-Lyapunov criteria for continuous-time processes. Adv. in Appl. Probab. 25 518-548. JSTOR: · Zbl 0781.60053
[36] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability . Springer, London. · Zbl 0925.60001
[37] Meyn, S. P. and Tweedie, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Probab. 4 981-1011. · Zbl 0812.60059
[38] Nummelin, E. (1978). A splitting technique for Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 43 309-318. · Zbl 0364.60104
[39] Nummelin, E. (1984). General Irreducible Markov Chains and Nonnegative Operators. Cambridge Tracts in Mathematics 83 . Cambridge Univ. Press, Cambridge. · Zbl 0551.60066
[40] Orey, S. (1971). Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand Reinhold Mathematical Studies 34 . Van Nostrand-Reinhold, London. · Zbl 0295.60054
[41] Raimond, O. (1999). Flots browniens isotropes sur la sphère. Ann. Inst. H. Poincaré Probab. Statist. 35 313-354. · Zbl 0924.60028
[42] Revuz, D. (1984). Markov Chains , 2nd ed. North-Holland Mathematical Library 11 . North-Holland, Amsterdam. · Zbl 0539.60073
[43] Tweedie, R. L. (1976). Criteria for classifying general Markov chains. Adv. in Appl. Probab. 8 737-771. JSTOR: · Zbl 0361.60014
[44] Yaglom, A. M. (1957). Some classes of random fields in n -dimensional space, related to stationary random processes. Theory Probab. Appl. 28 273-320.
[45] Zirbel, C. L. (1997). Translation and dispersion of mass by isotropic Brownian flows. Stochastic Process. Appl. 70 1-29. · Zbl 0911.60043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.