×

T. E. Harris and branching processes. (English) Zbl 1213.60132

Summary: T. E. Harris was a pioneer par excellence in many fields of probability theory. In this paper, we give a brief survey of the many fundamental contributions of Harris to the theory of branching processes, starting with his doctoral work at Princeton in the late forties and culminating in his fundamental book “The Theory of Branching Processes,” [Die Grundlehren der mathematischen Wissenschaften. 119. Berlin- Göttingen-Heidelberg: Springer (1963; Zbl 0117.13002), “The theory of branching processes.” Corrected reprint of the 1963 original. Mineola, NY: Dover Publications (2002 Zbl 1037.60001)].

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Athreya, K. B. and Ney, P. E. (1972). Branching Processes . Springer, New York. · Zbl 0259.60002
[2] Bartlett, M. S. and Kendall, D. G. (1951). On the use of the characteristic functional in the analysis of some stochastic processes occurring in physics and biology. Proc. Cambridge Philos. Soc. 47 65-76. · Zbl 0042.13802 · doi:10.1017/S0305004100026384
[3] Bellman, R. and Harris, T. E. (1948). Age-dependent stochastic branching processes. Proc. Natl. Acad. Sci. USA 34 601-604. JSTOR: · Zbl 0041.45604 · doi:10.1073/pnas.34.12.601
[4] Bhabha, H. J. and Heitler, W. (1937). The passage of fast electrons and the theory of cosmic showers. Proc. Roy. Soc. London Ser. A 159 432-458. · Zbl 0017.09407 · doi:10.1098/rspa.1937.0082
[5] Harris, T. E. (1963). The Theory of Branching Processes. Die Grundlehren der Mathematischen Wissenschaften 119 . Springer, Berlin. · Zbl 0117.13002
[6] Harris, T. E. (1948). Branching processes. Ann. Math. Statist. 19 474-494. · Zbl 0041.45603 · doi:10.1214/aoms/1177730146
[7] Harris, T. E. (1951). Some mathematical models for branching processes. In Proc. Second Berkeley Sympos. Math. Statist. Probab. 1950 305-328. Univ. California Press, Berkeley, CA. · Zbl 0045.07701
[8] Harris, T. E. (1957). The random functions of cosmic-ray cascades. Proc. Natl. Acad. Sci. USA 43 509-512. JSTOR: · doi:10.1073/pnas.43.6.509
[9] Harris, T. E. (1959). On One-dimensional Neutron Multiplication. Research Memorandum RM- 2317. RAND Corporation, Santa Monica, CA.
[10] Harris, T. and Bellman, R. (1952). On age-dependent binary branching processes. Ann. of Math. (2) 55 280-295. JSTOR: · Zbl 0046.35502 · doi:10.2307/1969779
[11] Jagers, P. (1975). Branching Processes with Biological Applications . Wiley, London. · Zbl 0356.60039
[12] Jánossy, L. (1950). On the absorption of a nucleon cascade. Proc. Roy. Irish Acad. Sect. A. 53 181-188. · Zbl 0041.13602
[13] Kesten, H. and Stigum, B. P. (1966). A limit theorem for multidimensional Galton-Watson processes. Ann. Math. Statist. 37 1211-1223. · Zbl 0203.17401 · doi:10.1214/aoms/1177699266
[14] Kolmogorov, A. N. (1938). On the solution of a biological problem. Tomsk Univ. Proc 2 7-12.
[15] Mode, C. J. (1971). Multitype Branching Processes . Elsevier, New York. · Zbl 0219.60061
[16] Ney, P. E. (1964). Generalized branching processes. I. Existence and uniqueness theorems. Illinois J. Math. 8 316-331. · Zbl 0119.14102
[17] Ney, P. E. (1964). Generalized branching processes. II. Asymptotic theory. Illinois J. Math. 8 332-350. · Zbl 0119.14102
[18] Sevastyanov, B. A. (1971). Branching Processes . Nauka, Moscow. · Zbl 0956.60090
[19] Watson, H. W. and Galton, F. (1874). On the probability of extinction of families. J. Royal Anthropological Inst. 6 138-144.
[20] Yaglom, A. M. (1947). Certain limit theorems of the theory of branching random processes. Doklady Akad. Nauk SSSR ( N.S. ) 56 795-798.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.