×

zbMATH — the first resource for mathematics

T. E. Harris’ contributions to interacting particle systems and percolation. (English) Zbl 1213.60159
Summary: Interacting particle systems and percolation have been among the most active areas of probability theory over the past half century. Ted Harris played an important role in the early development of both fields. This paper is a bird’s eye view of his work in these fields, and of its impact on later research in probability theory and mathematical physics.

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arratia, R. (1983). The motion of a tagged particle in the simple symmetric exclusion system on Z. Ann. Probab. 11 362-373. · Zbl 0515.60097 · doi:10.1214/aop/1176993602
[2] van den Berg, J., Häggström, O. and Kahn, J. (2006). Some conditional correlation inequalities for percolation and related processes. Random Structures Algorithms 29 417-435. · Zbl 1112.60087 · doi:10.1002/rsa.20102
[3] Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462-1482. · Zbl 0718.60109 · doi:10.1214/aop/1176990627
[4] Bollobás, B. and Riorden, O. (2006). Percolation . Cambridge Univ. Press, New York.
[5] Borcea, J., Brändén, P. and Liggett, T. M. (2009). Negative dependence and the geometry of polynomials. J. Amer. Math. Soc. 22 521-567. · Zbl 1206.62096 · doi:10.1090/S0894-0347-08-00618-8
[6] Broadbent, S. R. and Hammersley, J. M. (1957). Percolation processes. I. Crystals and mazes. Proc. Cambridge Philos. Soc. 53 629-641. · Zbl 0091.13901 · doi:10.1017/S0305004100032680
[7] Camia, F. and Newman, C. M. (2006). Two-dimensional critical percolation: The full scaling limit. Comm. Math. Phys. 268 1-38. · Zbl 1117.60086 · doi:10.1007/s00220-006-0086-1
[8] Dobrushin, R. L. (1971). Markov processes with a large number of locally interacting components: Existence of a limit process and its ergodicity. Probl. Inf. Transm. 7 149-164.
[9] Durrett, R. (1991). A new method for proving the existence of phase transitions. In Spatial Stochastic Processes. Progress in Probability 19 141-169. Birkhäuser, Boston, MA. · Zbl 0825.60052
[10] Fortuin, C. M., Kasteleyn, P. W. and Ginibre, J. (1971). Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 89-103. · Zbl 0346.06011 · doi:10.1007/BF01651330
[11] Griffeath, D. (1979). Additive and Cancellative Interacting Particle Systems. Lecture Notes in Math. 724 . Springer, Berlin. · Zbl 0412.60095 · doi:10.1007/BFb0067306
[12] Griffiths, R. B. (1967). Correlations in Ising ferromagnets I. J. Math. Phys. 8 478-483.
[13] Grimmett, G. (1999). Percolation , 2nd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 321 . Springer, Berlin. · Zbl 0926.60004
[14] Harris, T. E. (1960). A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 13-20. · Zbl 0122.36403 · doi:10.1017/S0305004100034241
[15] Harris, T. E. (1965). Diffusion with “collisions” between particles. J. Appl. Probab. 2 323-338. JSTOR: · Zbl 0139.34804 · doi:10.2307/3212197 · links.jstor.org
[16] Harris, T. E. (1972). Nearest-neighbor Markov interaction processes on multidimensional lattices. Adv. Math. 9 66-89. · Zbl 0267.60107 · doi:10.1016/0001-8708(72)90030-8
[17] Harris, T. E. (1974). Contact interactions on a lattice. Ann. Probab. 2 969-988. · Zbl 0334.60052 · doi:10.1214/aop/1176996493
[18] Harris, T. E. (1976). On a class of set-valued Markov processes. Ann. Probab. 4 175-194. · Zbl 0357.60049 · doi:10.1214/aop/1176996129
[19] Harris, T. E. (1977). A correlation inequality for Markov processes in partially ordered state spaces. Ann. Probab. 5 451-454. · Zbl 0381.60072 · doi:10.1214/aop/1176995804
[20] Harris, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355-378. · Zbl 0378.60106 · doi:10.1214/aop/1176995523
[21] Harris, T. E. (1991). Interacting systems, stirrings, and flows. In Random Walks , Brownian Motion , and Interacting Particle Systems. Progress in Probability 28 283-293. Birkhäuser, Boston, MA. · Zbl 0798.60087
[22] Holley, R. (1970). A class of interactions in an infinite particle system. Adv. Math. 5 291-309. · Zbl 0219.60054 · doi:10.1016/0001-8708(70)90035-6
[23] Kesten, H. (1980). The critical probability of bond percolation on the square lattice equals \frac12 . Comm. Math. Phys. 74 41-59. · Zbl 0441.60010 · doi:10.1007/BF01197577
[24] Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1-19. · Zbl 0588.60058 · doi:10.1007/BF01210789
[25] Lawler, G. F. (2009). Conformal invariance and 2D statistical physics. Bull. Amer. Math. Soc. ( N.S. ) 46 35-54. · Zbl 1154.82009 · doi:10.1090/S0273-0979-08-01229-9
[26] Lee, W. C. (1974). Random stirring of the real line. Ann. Probab. 2 580-592. · Zbl 0288.60094 · doi:10.1214/aop/1176996605
[27] Liggett, T. M. (1972). Existence theorems for infinite particle systems. Trans. Amer. Math. Soc. 165 471-481. · Zbl 0239.60072 · doi:10.2307/1995898
[28] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 276 . Springer, New York. · Zbl 0559.60078
[29] Liggett, T. M. (1999). Stochastic Interacting Systems : Contact , Voter and Exclusion Processes. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 324 . Springer, Berlin. · Zbl 0949.60006
[30] Liggett, T. M. (2006). Conditional association and spin systems. ALEA Lat. Am. J. Probab. Math. Stat. 1 1-19. · Zbl 1157.60088
[31] Liggett, T. M., Schinazi, R. B. and Schweinsberg, J. (2008). A contact process with mutations on a tree. Stochastic Process. Appl. 118 319-332. · Zbl 1141.60065 · doi:10.1016/j.spa.2007.04.007
[32] Liggett, T. M. and Steif, J. E. (2006). Stochastic domination: The contact process, Ising models and FKG measures. Ann. Inst. H. Poincaré Probab. Statist. 42 223-243. · Zbl 1087.60074 · doi:10.1016/j.anihpb.2005.04.002 · numdam:AIHPB_2006__42_2_223_0 · eudml:77895
[33] Mossel, E. and Roch, S. (2007). On the submodularity of influence in social networks. In STOC’ 07 -Proceedings of the 39 th Annual ACM Symposium on Theory of Computing 128-134. ACM, New York. · Zbl 1232.68183
[34] Sethuraman, S., Varadhan, S. R. S. and Yau, H.-T. (2000). Diffusive limit of a tagged particle in asymmetric simple exclusion processes. Comm. Pure Appl. Math. 53 972-1006. · Zbl 1029.60084 · doi:10.1002/1097-0312(200008)53:8<972::AID-CPA2>3.0.CO;2-#
[35] Smirnov, S. (2006). Towards conformal invariance of 2D lattice models. In International Congress of Mathematicians , Vol. II 1421-1451. Eur. Math. Soc., Zürich. · Zbl 1112.82014
[36] Spitzer, F. (1970). Interaction of Markov processes. Adv. Math. 5 246-290. · Zbl 0312.60060 · doi:10.1016/0001-8708(70)90034-4
[37] Varadhan, S. R. S. (1995). Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion. Ann. Inst. H. Poincaré Probab. Statist. 31 273-285. · Zbl 0816.60093 · numdam:AIHPB_1995__31_1_273_0 · eudml:77506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.