zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Starting solutions for the motion of a second grade fluid due to longitudinal and torsional oscillations of a circular cylinder. (English) Zbl 1213.76014
Summary: The starting solutions corresponding to the motions of a second grade fluid due to the longitudinal and torsional oscillations of a circular cylinder are determined by means of the finite Hankel transforms. These solutions, presented as sum of the steady-state and transient solutions tend to those for a Navier-Stokes fluid as a limiting case. The steady-state solutions are also presented in simpler forms, in terms of the modified Bessel functions of the first and second kind.

MSC:
76A05Non-Newtonian fluids
WorldCat.org
Full Text: DOI
References:
[1] Stokes, G. G.: On the effect of the rotation of cylinders and spheres about their own axes in increasing the logarithmic decrement of the arc of vibration. Mathematical and philosophical papers 5 (1886)
[2] Casarella, M. J.; Laura, P. A.: Drag on an oscillating rod with longitudinal and torsional motion. J. hydronaut. 3, 180-183 (1969)
[3] Rajagopal, K. R.: Longitudinal and torsional oscillations of a rod in a non-Newtonian fluid. Acta mech. 40, 281-285 (1983) · Zbl 0539.76005
[4] Rajagopal, K. R.; Bhatnagar, R. K.: Exact solutions for some simple flows of an Oldroyd-B fluid. Acta mech. 113, 233-239 (1995) · Zbl 0858.76010
[5] Bandelli, R.; Lapczyk, I.; Li, H.: Longitudinal and torsional oscillations of a rod in a third-grade fluid. Int. J. Non-linear mech. 29, 397-408 (1994) · Zbl 0808.73058
[6] Erdogan, M. E.: A note on an unsteady flow of a viscous fluid due to an oscillating plane wall. Int. J. Non-linear mech. 35, 1-6 (2000) · Zbl 1006.76028
[7] Fetecau, C.; Fetecau, Corina: Starting solutions for some unsteady unidirectional flows of a second grade fluid. Int. J. Eng. sci. 43, 781-789 (2005) · Zbl 1211.76032
[8] Rajagopal, K. R.: A note on unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Non-linear mech. 17, 369-373 (1982) · Zbl 0527.76003
[9] Hayat, T.; Asghar, S.; Siddiqui, A. M.: Periodic unsteady flows of a non-Newtonian fluid. Acta mech. 131, 169-175 (1998) · Zbl 0939.76002
[10] Hayat, T.; Asghar, S.; Siddiqui, A. M.: Some unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Eng. sci. 38, 337-346 (2000) · Zbl 1210.76015
[11] Hayat, T.; Siddiqui, A. M.; Asghar, S.: Some simple flows of an Oldroyd-B fluid. Int. J. Eng. sci. 39, 135-147 (2001)
[12] Asghar, S.; Hayat, T.; Siddiqui, A. M.: Moving boundary in a non-Newtonian fluid. Int. J. Non-linear mech. 37, 75-80 (2002) · Zbl 1116.76310
[13] Dunn, J. E.; Fosdick, R. L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. ration. Mech. anal. 56, 191-252 (1974) · Zbl 0324.76001
[14] Dunn, J. E.; Rajagopal, K. R.: Fluids of differential type: critical review and thermodynamic analysis. Int. J. Eng. sci. 33, 689-729 (1995) · Zbl 0899.76062
[15] Bandelli, R.; Rajagopal, K. R.; Galdi, G. P.: On some unsteady motions of fluids of second grade. Arch. mech. 47, No. 4, 661-676 (1995) · Zbl 0835.76002
[16] Bandelli, R.; Rajagopal, K. R.: Start-up flows of second grade fluids in domains with one finite dimension. Int. J. Non-linear mech. 30, 817-839 (1995) · Zbl 0866.76004
[17] Hayat, T.; Hutter, K.: Rotating flow of a second order fluid on a porous plate. Int. J. Non-linear mech. 39, 767-777 (2004) · Zbl 05138488
[18] Rajagopal, K. R.: On the creeping flow of the second-order fluid. J. non-Newton fluid mech. 15, 239-246 (1984) · Zbl 0568.76015
[19] Rajagopal, K. R.; Gupta, A. S.: An exact solution for the flow of a non Newtonian fluid past an infinite porous plate. Meccanica 19, 158-160 (1984) · Zbl 0552.76008
[20] Rajagopal, K. R.: On boundary conditions for fluids of the differential type. Navier -- Stokes equations and related non-linear problems, 273-278 (1995) · Zbl 0846.35107
[21] Fetecau, C.: Analytical solutions for non-Newtonian fluid flows in pipe-like domains. Int. J. Non-linear mech. 39, 225-231 (2004) · Zbl 1287.76036
[22] Sneddon, I. N.: Functional analysis. Encyclopedia of physics (1955)
[23] Sneddon, I. N.: Fourier transforms. (1951) · Zbl 0038.26801
[24] Srivastava, P. N.: Non-steady helical flow of a visco-elastic liquid. Arch. mech. Stos. 2, No. 18, 145-150 (1966)