zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust optimization model for a dynamic network design problem under demand uncertainty. (English) Zbl 1213.90072
Summary: This paper describes a robust optimization approach for a network design problem explicitly incorporating traffic dynamics and demand uncertainty. In particular, we consider a cell transmission model based network design problem of the linear programming type and use box uncertainty sets to characterize the demand uncertainty. The major contribution of this paper is to formulate such a robust network design problem as a tractable linear programming model and demonstrate the model robustness by comparing its solution performance with the nominal solution from the corresponding deterministic model. The results of the numerical experiments justify the modeling advantage of the robust optimization approach and provide useful managerial insights for enacting capacity expansion policies under demand uncertainty.

MSC:
90B10Network models, deterministic (optimization)
90B20Traffic problems
90C08Special problems of linear programming
WorldCat.org
Full Text: DOI
References:
[1] Abdulaal M, LeBlanc LJ (1979) Continuous equilibrium network design models. Transp Res B 13:19--32 · Zbl 0398.90042 · doi:10.1016/0191-2615(79)90004-3
[2] Atamturk A, Zhang M (2007) Two-stage robust network flow and design under demand uncertainty. Oper Res 55:662--673 · Zbl 1167.90409 · doi:10.1287/opre.1070.0428
[3] Ban X, Lu S, Ferris M et al (2009) Risk-averse second-best toll pricing. Proc 18th Int Sympo Transp Traffic Theory 197--218
[4] Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23:769--805 · Zbl 0977.90052 · doi:10.1287/moor.23.4.769
[5] Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25:1--13 · Zbl 0941.90053 · doi:10.1016/S0167-6377(99)00016-4
[6] Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program 88:411--424 · Zbl 0964.90025 · doi:10.1007/PL00011380
[7] Ben-Tal A, Nemirovski A (2002) Robust optimization--methodology and applications. Math Program 92:453--480 · Zbl 1007.90047 · doi:10.1007/s101070100286
[8] Bertsimas D, Brown DB, Caramanis C (2007) Theory and applications of robust optimization. Available via http://users.ece.utexas.edu/$\sim$cmcaram/pubs/RobustOptimizationSV.pdf . Accessed 15 Mar, 2010
[9] Daganzo CF (1994) The cell transmission model part I: a simple dynamic representation of highway traffic. Transp Res B 28:269--287 · doi:10.1016/0191-2615(94)90002-7
[10] Daganzo CF (1995) The cell transmission model part II: network traffic. Transp Res B 29:79--93 · doi:10.1016/0191-2615(94)00022-R
[11] Karoonsoontawong A, Waller ST (2007) Robust dynamic continuous network design problem. J Transp Res Board 2029:58--71 · doi:10.3141/2029-07
[12] Karoonsoontawong A, Waller ST (2008) Integrated network capacity expansion and traffic signal optimization: robust bi-level dynamic formulation. Network Spatial Econ. doi: 10.1007/s11067-008-9071-x · Zbl 1202.90030
[13] Lin D, Karoonsoontawong A, Waller ST (2008) A Dantzig-Wolfe decomposition based heuristic scheme for bi-level dynamic network design problem (2008). Network Spatial Econ. doi: 10.1007/s11067-008-9093-4 · Zbl 1213.90254
[14] Lou Y, Yin Y, Lawpongpanich S (2009) A robust approach to discrete network designs with demand uncertainty. J Transp Res Board 2090:86--94 · doi:10.3141/2090-10
[15] Lu Y (2007) Robust transportation network design under user equilibrium, Master’s Thesis, MIT, Cambridge, MA.
[16] Magnanti TL, Wong RT (1984) Network design and transportation planning: models and algorithms. Transp Sci 18:1--55 · doi:10.1287/trsc.18.1.1
[17] Minoux M (1989) Network synthesis and optimum network design problems: models, solution methods and applications. Netw 19:313--360 · Zbl 0666.90032 · doi:10.1002/net.3230190305
[18] Mudchanatongsuk S, Ordonez F, Liu J (2008) Robust solutions for network design under transportation cost and demand uncertainty. J Oper Res Soc 59:652--662 · Zbl 1153.90341 · doi:10.1057/palgrave.jors.2602362
[19] Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Oper Res 43:264--281 · Zbl 0832.90084 · doi:10.1287/opre.43.2.264
[20] Ordonez F, Zhao J (2007) Robust capacity expansion of network flows. Netw 50:136--145 · Zbl 1144.90325 · doi:10.1002/net.20183
[21] Peeta S, Ziliaskopoulos AK (2001) Foundations of dynamic traffic assignment: the past, the present and the future. Network Spatial Econ 1:233--265 · doi:10.1023/A:1012827724856
[22] Ukkusuri SV, Waller ST (2008) Linear programming models for the user and system optimal dynamic network design problem: formulations, comparisons and extensions. NetwOrk Spatial Econ 8:383--406 · Zbl 1162.90515 · doi:10.1007/s11067-007-9019-6
[23] Ukkusuri SV, Mathew T, Waller T (2007) Robust transportation network design under demand uncertainty. Comput Aided Civ Infrastruct Eng 22:6--18 · doi:10.1111/j.1467-8667.2006.00465.x
[24] Waller ST, Ziliaskopoulos AK (2001) Stochastic dynamic network design problem. J Transp Res Board 1771:106--113 · doi:10.3141/1771-14
[25] Waller ST, Ziliaskopoulos AK (2006) A chance-constrained based stochastic dynamic traffic assignment model: analysis, formulation and solution algorithms. Transp Res C 14:418--427 · doi:10.1016/j.trc.2006.11.002
[26] Wardman M (1998) The value of travel time: a review of British evidence. J Transp Econ Policy 32:285--316
[27] Yang H, Bell MGH (1998) Models and algorithms for road network design: a review and some new developments. Transp Rev 18:257--278 · doi:10.1080/01441649808717016
[28] Yao T, Mandala SR, Chung BD (2009) Evacuation transportation planning under uncertainty: a robust optimization approach. Network Spatial Econ 9:171--189 · Zbl 1170.90328 · doi:10.1007/s11067-009-9103-1
[29] Yin Y, Lawpongpanich S (2007) A robust approach to continuous network design with demand uncertainty. Proc 17th Int Sympo Transp Traffic Theory 111--126
[30] Zhao Y, Kockelman K (2002) The propagation of uncertainty through travel demand models: an exploratory analysis. Ann Reg Sci 36:145--163 · doi:10.1007/s001680200072
[31] Ziliaskopoulos AK (2000) A linear programming model for the single destination system optimum dynamic traffic assignment problem. Transp Sci 34:37--49 · Zbl 1002.90013 · doi:10.1287/trsc.34.1.37.12281