Zeng, J.; Li, S. J. On vector variational-like inequalities and set-valued optimization problems. (English) Zbl 1213.90261 Optim. Lett. 5, No. 1, 55-69 (2011). Summary: Some solution relationships between set-valued optimization problems and vector variational-like inequalities are established under generalized invexities. In addition, a generalized Lagrange multiplier rule for a constrained set-valued optimization problem is obtained under C-preinvexity. Cited in 10 Documents MSC: 90C48 Programming in abstract spaces 90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming) Keywords:generalized Lagrange multiplier rule; generalized invexity PDF BibTeX XML Cite \textit{J. Zeng} and \textit{S. J. Li}, Optim. Lett. 5, No. 1, 55--69 (2011; Zbl 1213.90261) Full Text: DOI OpenURL References: [1] Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkhauser, Boston (1990) · Zbl 0713.49021 [2] Bhatia D., Mehra A.: Lagrangian duality for preinvex set-valued functions. J. Math. Anal. Appl. 214, 599–612 (1997) · Zbl 0894.90142 [3] Cambini, A., Martein, L.: Handbook of Generalized Convexity and Generalized Monotonicity. In: Nonconvex Optimization and Its Applications, vol. 76. Springer, The Netherlands (2005) · Zbl 1098.90084 [4] Chinchuluun A., Pardalos P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154(1), 29–50 (2007) · Zbl 1146.90060 [5] Fan L., Guo Y.: On strongly {\(\alpha\)}-preinvex functions. J. Math. Anal. Appl. 330, 1412–1425 (2007) · Zbl 1121.26010 [6] Götz A., Jahn J.: The Lagrange multiplier rule in set-valued optimization. SIAM J. Optim. 10, 331–344 (1999) · Zbl 1029.90065 [7] Giannessi F., Maugeri A., Pardalos P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer, Dordrecht (2001) · Zbl 0979.00025 [8] Hanson M.A.: On sufficiency of the Kuhn–Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981) · Zbl 0463.90080 [9] Jahn J.: Mathematical Vector Optimization in Partially Orderd Linear Spaces. Verlag Peter Lang, Frankfurt (1986) · Zbl 0578.90048 [10] Li, S.J.: Subgradient of S-convex set-valued mappings and weak efficient solutions. Appl. Math. A J. Chin. Univ. Ser. A 13, 463–472 (1998)(in Chinese) · Zbl 0921.90131 [11] Dos Santos L.B., Ruiz-Garzón G., Rojas-Medar M.A., Rufián-Lizana A.: Some relations between variational-like inequality problems and vector optimization problems in Banach spaces. Comput. Math. Appl. 55, 1808–1814 (2008) · Zbl 1138.49010 [12] Mishra S.K., Wang S.Y.: Vector variational-like inequality and non-smooth vector optimization problems. Nonlinear Anal. 64, 1939–1945 (2006) · Zbl 1134.49003 [13] Pini R.: Invexity and generalized convexity. Optimization 22, 513–525 (1991) · Zbl 0731.26009 [14] Pardalos, P.M., Yuan, D., Liu, X., Chinchuluun, A.: (2007) Optimality conditions and duality for multiobjective programming involving (C; {\(\alpha\)}; {\(\rho\)}; d)-type I functions. In: Konnov, I.V., Luc, D.T., Rubinov, A.M. (eds.) Generalized Convexity and Related Topics, pp. 73–87. Springer, Berlin · Zbl 1132.49027 [15] Ruiz-Garzón G., Osuna-Gómez R., Rufián-Lizana A.: Generalized invex monotonicity. Eur. J. Oper. Res. 144, 501–512 (2003) · Zbl 1028.90036 [16] Ruiz-Garzon G., Osuna-Gómez R., Rufián-Lizana A.: Relationships between vector variational-like inequality and optimization problems. Eur. J. Oper. Res. 157, 113–119 (2004) · Zbl 1106.90060 [17] Rezaie M., Zafarani J.: Vector optimization and variational-like inequalities. J. Glob. Optim. 43, 47–66 (2009) · Zbl 1176.90556 [18] Sawaragi Y., Nakayama H., Tanino T.: Theory of Multiobjective Optimization. Academic Press, New York (1985) · Zbl 0566.90053 [19] Soleimani-Damaneh M.: Characterization of nonsmooth quasiconvex and pseudoconvex functions. J. Math. Anal. Appl. 330, 1387–1392 (2007) · Zbl 1162.49302 [20] Yang X.M., Li D.: Semistrictly preinvex functions. J. Math. Anal. Appl. 258, 287–308 (2001) · Zbl 0985.26007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.