zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An iterative method for pricing American options under jump-diffusion models. (English) Zbl 1213.91164
Summary: We propose an iterative method for pricing American options under jump-diffusion models. A finite difference discretization is performed on the partial integro-differential equation, and the American option pricing problem is formulated as a linear complementarity problem (LCP). Jump-diffusion models include an integral term, which causes the resulting system to be dense. We propose an iteration to solve the LCPs efficiently and prove its convergence. Numerical examples with Kou’s and Merton’s jump-diffusion models show that the resulting iteration converges rapidly.

91G60Numerical methods in mathematical finance
65N06Finite difference methods (BVP of PDE)
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
91G20Derivative securities
Full Text: DOI
[1] Achdou, Y.; Pironneau, O.: Computational methods for option pricing, Frontiers in applied mathematics 30 (2005) · Zbl 1078.91008 · doi:10.1137/1.9780898717495
[2] Almendral, A.; Oosterlee, C. W.: Numerical valuation of options with jumps in the underlying, Appl. numer. Math. 53, 1-18 (2005) · Zbl 1117.91028 · doi:10.1016/j.apnum.2004.08.037
[3] Andersen, L.; Andreasen, J.: Jump-diffusion processes: volatility smile Fitting and numerical methods for option pricing, Rev. derivatives res. 4, 231-262 (2000) · Zbl 1274.91398
[4] Bates, D. S.: Jumps and stochastic volatility: exchange rate processes implicit deutsche mark options, Rev. finan. Stud. 9, 69-107 (1996)
[5] Black, F.; Scholes, M.: The pricing of options and corporate liabilities, J. polit. Economy 81, 637-654 (1973) · Zbl 1092.91524
[6] Brennan, M. J.; Schwartz, E. S.: The valuation of American put options, J. finance 32, 449-462 (1977)
[7] Carr, P.; Geman, H.; Madan, D. B.; Yor, M.: The fine structure of asset returns: an empirical investigation, J. business 75, 305-332 (2002)
[8] D’halluin, Y.; Forsyth, P. A.; Labahn, G.: A penalty method for American options with jump diffusion processes, Numer. math. 97, 321-352 (2004) · Zbl 1126.91036 · doi:10.1007/s00211-003-0511-8
[9] D’halluin, Y.; Forsyth, P. A.; Vetzal, K. R.: Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. anal. 25, 87-112 (2005) · Zbl 1134.91405 · doi:10.1093/imanum/drh011
[10] Eraker, B.; Johannes, M.; Polson, N.: The impact of jumps in volatility and returns, J. finance 58, 1269-1300 (2003)
[11] Fang, F.; Oosterlee, C. W.: Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions, Numer. math. 114, 27-62 (2009) · Zbl 1185.91176 · doi:10.1007/s00211-009-0252-4
[12] Giles, M. B.; Carter, R.: Convergence analysis of Crank-Nicolson and rannacher time-marching, J. comput. Finance 9, 89-112 (2006)
[13] Huang, J.; Pang, J. S.: Option pricing and linear complementarity, J. comput. Finance 2, 31-60 (1998)
[14] Ikonen, S.; Toivanen, J.: Operator splitting methods for American option pricing, Appl. math. Lett. 17, 809-814 (2004) · Zbl 1063.65081 · doi:10.1016/j.aml.2004.06.010
[15] Ikonen, S.; Toivanen, J.: Pricing American options using Lu decomposition, Appl. math. Sci. 1, 2529-2551 (2007) · Zbl 1140.91046
[16] Ikonen, S.; Toivanen, J.: Operator splitting methods for pricing American options under stochastic volatility, Numer. math. 113, 299-324 (2009) · Zbl 1204.91126 · doi:10.1007/s00211-009-0227-5
[17] Kou, S. G.: A jump-diffusion model for option pricing, Manage. sci. 48, 1086-1101 (2002) · Zbl 1216.91039 · doi:10.1287/mnsc.48.8.1086.166
[18] Lord, R.; Fang, F.; Bervoets, F.; Oosterlee, C. W.: A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes, SIAM J. Sci. comput. 30, 1678-1705 (2008) · Zbl 1170.91389 · doi:10.1137/070683878
[19] Merton, R. C.: Theory of rational option pricing, Bell J. Econom. manage. Sci. 4, 141-183 (1973) · Zbl 1257.91043
[20] Merton, R. C.: Option pricing when underlying stock returns are discontinuous, J. finan. Econ. 3, 125-144 (1976) · Zbl 1131.91344 · doi:10.1016/0304-405X(76)90022-2
[21] Rannacher, R.: Finite element solution of diffusion problems with irregular data, Numer. math. 43, 309-327 (1984) · Zbl 0512.65082 · doi:10.1007/BF01390130
[22] Sachs, E. W.; Strauss, A. K.: Efficient solution of a partial integro-differential equation in finance, Appl. numer. Math. 58, 1687-1703 (2008) · Zbl 1155.65109 · doi:10.1016/j.apnum.2007.11.002
[23] Tavella, D.; Randall, C.: Pricing financial instruments: the finite difference method, (2000)
[24] Toivanen, J.: Numerical valuation of European and American options under kou’s jump-diffusion model, SIAM J. Sci. comput. 30, 1949-1970 (2008) · Zbl 1178.35225 · doi:10.1137/060674697
[25] Toivanen, J.: A high-order front-tracking finite difference method for pricing American options under jump-diffusion models, J. comput. Finance 13, 61-79 (2010) · Zbl 1284.91575
[26] Wilmott, P.: Derivatives, (1998)