×

zbMATH — the first resource for mathematics

Persistence of structured populations in random environments. (English) Zbl 1213.92057
Summary: Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting “bounded” dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space.

MSC:
92D40 Ecology
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold, L., Random dynamical systems, () · Zbl 0805.60048
[2] Arnold, L.; Gundlach, V.M.; Demetrius, L., Evolutionary formalism for products of positive random matrices, Ann. appl. probab., 4, 3, 859-901, (1994) · Zbl 0818.15015
[3] Athreya, K.B.; Dai, J., Random logistic maps I, J. theoret. probab., 13, 595-608, (2000) · Zbl 0969.60069
[4] Box, G.E.P.; Jenkins, G., Times series analysis, forecasting and control, (1990), Holden-Day, Incorporated
[5] Bulmer, M.G., Selection for iteroparity in a variable environment, Amer. nat., 126, 1, 63-71, (1985), URL: http://www.jstor.org/stable/2461562
[6] Caswell, H., Matrix population models, (2001), Sinauer, Sunderland Massachuesetts
[7] Charlesworth, B., Evolution in age-structured populations, () · Zbl 0811.92016
[8] Chesson, P.L., Predator-prey theory and variability, Annu. rev. ecol. syst., 9, 323-347, (1978)
[9] Chesson, P.L., The stabilizing effect of a random environment, J. math. biol., 15, 1, 1-36, (1982) · Zbl 0505.92021
[10] Chesson, P.L., Persistence of a Markovian population in a patchy environment, Z. wahrsch. verw. gebiete, 66, 1, 97-107, (1984) · Zbl 0522.92018
[11] Chesson, P.L.; Ellner, S., Invasibility and stochastic boundedness in monotonic competition models, J. math. biol., 27, 117-138, (1989) · Zbl 0717.92024
[12] Chesson, P.L.; Warner, R.R., Environmental variability promotes coexistence in lottery competitive systems, Amer. nat., 117, 6, 923, (1981), URL: http://www.journals.uchicago.edu/doi/abs/10.1086/283778
[13] Chueshov, I., Monotone random systems theory and applications, () · Zbl 0890.35014
[14] Cohen, D., Optimizing reproduction in a randomly varying environment, J. theoret. biol., 12, 119-129, (1966)
[15] Cuddington, K.M.; Yodzis, P., Black noise and population persistence, Proc biol sci., 266, 969-973, (1999)
[16] Duflo, M., Random iterative models, (1997), Springer Verlag
[17] Ellner, S.P., Asymptotic behavior of some stochastic difference equation population models, J. math. biol., 19, 169-200, (1984)
[18] Ferriere, R.; Gatto, M., Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations, Theoret. popul. biol., 48, 126-171, (1995) · Zbl 0863.92015
[19] Gillespie, J.H., Polymorphism in random environments, Theoret. popul. biol., 4, 193-195, (1973)
[20] Gonzalez, A.; Holt, R.D., The inflationary effects of environmental fluctuations in source-sink systems, Proc. nat. acad. sci., 99, 14872-14877, (2002)
[21] Gyllenberg, M.; Hognas, G.; Koski, T., Null recurrence in a stochastic ricker model, (), 147-164 · Zbl 0802.60059
[22] Gyllenberg, M.; Hognas, G.; Koski, T., Population models with environmental stochasticity, J. math. biol., 32, 93-108, (1994) · Zbl 0799.92021
[23] Halley, J.M., Ecology, evolution and noise, Trends in ecology & evolution, 11, 33-37, (1996)
[24] Hanski, I., Metapopulation ecology, () · Zbl 0913.92025
[25] Hardin, D.P.; Takáč, P.; Webb, G.F., Asymptotic properties of a continuous-space discrete-time population model in a random environment, J. math. biol., 26, 4, 361-374, (1988) · Zbl 0717.92026
[26] Hardin, D.P.; Takáč, P.; Webb, G.F., A comparison of dispersal strategies for survival of spatially heterogeneous populations, SIAM J. appl. math., 48, 6, 1396-1423, (1988) · Zbl 0668.92014
[27] Hardin, D.P.; Takáč, P.; Webb, G.F., Dispersion population models discrete in time and continuous in space, J. math. biol., 28, 1, 1-20, (1990) · Zbl 0732.92022
[28] Haskell, C.; Sacker, R.J., The stochastic beverton-Holt equation and the M. neubert conjecture, J. dynam. differential equations, 17, 4, 825-844, (2005) · Zbl 1093.39002
[29] Heino, M.; Ripa, J.; Kaitala, V., Extinction risk under coloured environmental noise, Ecography, 23, 177-184, (2000)
[30] Holt, R.D.; Gomulkiewicz, R.; Barfield, M., The phenomenology of niche evolution via quantitative traits in a ‘black-hole’ sink, Proc. roy. soc. B, 270, 215-224, (2003)
[31] Horn, R.A.; Johnson, C.R., Matrix analysis, (1990), Cambridge University Press Cambridge, corrected reprint of the 1985 original · Zbl 0704.15002
[32] Jansen, V.A.A.; Yoshimura, J., Populations can persist in an environment consisting of sink habitats only, Proc. natl. acad. sci. USA, 95, 3696-3698, (1998)
[33] Key, E.S., Computable examples of the maximal Lyapunov exponent, Probab. th. rel. fields, 75, 97-107, (1987) · Zbl 0595.60012
[34] Kifer, Yuri, (), x+210
[35] Kingman, J.F.C., Subadditive ergodic theory, Ann. probab., 1, 883-909, (1973) · Zbl 0311.60018
[36] Lawton, J.H., More time means more variation, Nature, 334, 563, (1988)
[37] Lindvall, T., Lectures on the coupling method, (2002), Dover · Zbl 1013.60001
[38] Mañé, R., Ergodic theory and differentiable dynamics, (1983), Springer-Verlag New York
[39] Mannion, D., Products of 2×2 random matrices, Annals appl. probab., 3, 4, 1189-1218, (1993), URL: http://www.jstor.org/stable/2245205 · Zbl 0784.60019
[40] Melbourne, B.A.; Cornell, H.V.; Davies, K.F.; Dugaw, C.J.; Elmendorf, S.; Freestone, A.L.; Hall, R.J.; Harrison, S.; Hasting, A.; Holland, M.; Holyoak, M.; Lambrinos, J.; Moore, K.; Yokomizo, H., Invasion in a heterogeneous world: resistance, coexistence or hostile takeover?, Ecology letters, 10, 1, 77-94, (2007), URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1461-0248.2006.00987.x
[41] Meyn, S.P.; Tweedie, R.L., Markov chains and stochastic stability, (1993), Springer · Zbl 0925.60001
[42] Petchey, O.L.; Gonzalez, A.; Wilson, H.B., Effects on population persistence: the interaction between environmental noise colour, intraspecific competition and space, Proc. biol. sci., 264, 1389, 1841-1847, (1997), URL: http://www.jstor.org/stable/51122
[43] Petchey, O.L.; Gonzalez, A.; Wilson, H.B., Effects on population persistence: the interaction between environmental noise colour, intraspecific competition and space, Proc. biol. sci., 264, 1389, 1841-1847, (1997), URL: http://www.jstor.org/stable/51122
[44] Ripa, J.; Lundberg, P., Noise colour and the risk of population extinctions, Proc. biol. sci., 263, 1377, 1751-1753, (1996), URL: http://www.jstor.org/stable/50667
[45] Roerdink, J.B.T.M., The biennial life strategy in a random environment, J. math. biol., 26, 309-320, (1987) · Zbl 0717.92021
[46] Rokhlin, V.A., Exact endomorphism of a Lebesgue space, Izv. acad. sci USSR, ser mat, 25, 499-530, (1964)
[47] Roy, M.; Holt, R.D.; Barfield, M., Temporal autocorrelation can enhance the persistence and abundance of metapopulations comprised of coupled sinks, Amer. nat., 166, 246-261, (2005)
[48] Ruelle, D., Ergodic theory of differentiable dynamical systems, IHES publ. math., 50, 27-58, (1979) · Zbl 0426.58014
[49] Ruelle, D., Characteristic exponents and invariant manifolds in Hilbert space, Ann. of math., 115, 243-290, (1982) · Zbl 0493.58015
[50] Steele, J.H., A comparison of terrestrial and marine ecological systems, Nature, 313, 355-358, (1985)
[51] Tuljapurkar, S., Population dynamics in variable environments. II. correlated environments, sensitivity analysis and dynamics, Theoret. popul. biol., 21, 114-140, (1982) · Zbl 0483.92009
[52] Tuljapurkar, S., Demography in stochastic environments. I exact distributions of age structure, J. math. biol., 19, 335-350, (1984) · Zbl 0552.92014
[53] Tuljapurkar, S., Demography in stochastic environments. II growth and convergence rates, J. math. biol., 24, 569-581, (1986) · Zbl 0613.92020
[54] Tuljapurkar, S., Population dynamics in variable environments, (1990), Springer-Verlag New York · Zbl 0704.92014
[55] Tuljapurkar, S.; Haridas, C.V., Temporal autocorrelation and stochastic population growth, Ecol. lett., 9, 327-337, (2006)
[56] Turelli, M., Does environmental variability limit niche overlap?, Proc. nat. acad. sci. USA, 75, 10, 5085-5089, (1978), URL: http://www.jstor.org/stable/69064 · Zbl 0395.92022
[57] Turelli, M.; Petry, D., Density-dependent selection in a random environment: an evolutionary process that can maintain stable population dynamics, Proc. nat. acad. sci. USA, 77, 12, 7501-7505, (1980), URL: http://www.jstor.org/stable/9794 · Zbl 0447.92016
[58] Vasseur, D.A.; Yodzis, P., The color of environmental noise, Ecology, 85, 1146-1152, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.