Guirardel, Vincent; Levitt, Gilbert Computing equations for residually free groups. (English) Zbl 1214.20034 Ill. J. Math. 54, No. 1, 129-135 (2010). Summary: We show that there is no algorithm deciding whether the maximal residually free quotient of a given finitely presented group is finitely presentable or not. Given a finitely generated subgroup \(G\) of a finite product of limit groups, we discuss the possibility of finding an explicit set of defining equations (i.e., of expressing \(G\) as the maximal residually free quotient of an explicit finitely presented group). MSC: 20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects) 20F05 Generators, relations, and presentations of groups 20E26 Residual properties and generalizations; residually finite groups 20F65 Geometric group theory 20F67 Hyperbolic groups and nonpositively curved groups Keywords:algorithms; residually free quotient groups; finitely presented groups; finitely generated subgroups; finite products of limit groups × Cite Format Result Cite Review PDF Full Text: arXiv Euclid References: [1] G. Baumslag, A. Myasnikov and V. Remeslennikov, Algebraic geometry over groups. I. Algebraic sets and ideal theory , J. Algebra 219 (1999), 16-79. · Zbl 0938.20020 · doi:10.1006/jabr.1999.7881 [2] M. R. Bridson, J. Howie, C. F. Miller III and H. Short, Subgroups of direct products of limit groups , Ann. of Math. (2) 170 (2009), 1447-1467. · Zbl 1196.20047 · doi:10.4007/annals.2009.170.1447 [3] M. R. Bridson and C. F. Miller III, Structure and finiteness properties of subdirect products of groups , Proc. Lond. Math. Soc. (3) 98 (2009), 631-651. · Zbl 1167.20016 · doi:10.1112/plms/pdn039 [4] D. Groves and H. Wilton, Enumerating limit groups , Groups Geom. Dyn. 3 (2009), 389-399. · Zbl 1216.20029 · doi:10.4171/GGD/63 [5] F. J. Grunewald, On some groups which cannot be finitely presented , J. London Math. Soc. (2) 17 (1978), 427-436. · Zbl 0385.20020 · doi:10.1112/jlms/s2-17.3.427 [6] O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group. II . Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998), 517-570. · Zbl 0904.20017 · doi:10.1006/jabr.1997.7184 [7] O. Kharlampovich and A. G. Myasnikov, Effective JSJ decompositions, Groups, languages, algorithms, Contemp. Math., vol. 378, Amer. Math. Soc., Providence, RI, 2005, pp. 87-212. · Zbl 1093.20019 [8] R. C. Lyndon and P. E. Schupp, Combinatorial group theory , Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. · Zbl 0997.20037 [9] A. G. Myasnikov and V. N. Remeslennikov, Exponential groups. II . Extensions of centralizers and tensor completion of CSA-groups, Internat. J. Algebra Comput. 6 (1996), 687-711. · Zbl 0866.20014 · doi:10.1142/S0218196796000398 [10] Z. Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams , Publ. Math. Inst. Hautes Études Sci. 93 (2001), 31-105. · Zbl 1018.20034 · doi:10.1007/s10240-001-8188-y [11] H. Wilton, Hall’s theorem for limit groups , Geom. Funct. Anal. 18 (2008), 271-303. · Zbl 1158.20020 · doi:10.1007/s00039-008-0657-8 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.