Ibrahim, Rabha W. Existence and uniqueness of holomorphic solutions for fractional Cauchy problem. (English) Zbl 1214.30027 J. Math. Anal. Appl. 380, No. 1, 232-240 (2011). Summary: By employing majorant functions, the existence and uniqueness of holomorphic solutions to nonlinear fractional partial differential equations (Cauchy problems) are introduced. Furthermore, the analytic continuation of the solutions is studied. Cited in 20 Documents MSC: 30E99 Miscellaneous topics of analysis in the complex plane 26A33 Fractional derivatives and integrals Keywords:fractional calculus; fractional differential operator; fractional integral operator; majorant function; fractional Cauchy problem in complex domain PDF BibTeX XML Cite \textit{R. W. Ibrahim}, J. Math. Anal. Appl. 380, No. 1, 232--240 (2011; Zbl 1214.30027) Full Text: DOI References: [1] Bonilla, B.; Rivero, M.; Trujillo, J. J., On systems of linear fractional differential equations with constant coefficients, Appl. Math. Comput., 187, 68-78 (2007) · Zbl 1121.34006 [2] Diethelm, K.; Ford, N., Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 229-248 (2002) · Zbl 1014.34003 [3] Goodman, A. W., Univalent Functions, vols. I and II (1983), Polygonal Publishing House: Polygonal Publishing House Washington, New Jersey [4] Hilfer, R., Fractional diffusion based on Riemann-Liouville fractional derivatives, J. Phys. Chem. Biol., 104, 3914-3917 (2000) [5] Ibrahim, R. W.; Momani, S., On the existence and uniqueness of solutions of a class of fractional differential equations, J. Math. Anal. Appl., 334, 1-10 (2007) · Zbl 1123.34302 [6] Ibrahim, R. W.; Darus, M., Subordination and superordination for analytic functions involving fractional integral operator, Complex Var. Elliptic Equ., 53, 1021-1031 (2008) · Zbl 1155.30006 [7] Ibrahim, R. W.; Darus, M., Subordination and superordination for univalent solutions for fractional differential equations, J. Math. Anal. Appl., 345, 871-879 (2008) · Zbl 1147.30009 [8] Kiryakova, V., Generalized Fractional Calculus and Applications, Pitman Res. Notes Math. Ser., vol. 301 (1994), Longman/Wiley: Longman/Wiley New York · Zbl 0882.26003 [9] Lewandowski, R.; Chorazyczewski, B., Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers, Comput. Struct., 88, 1-17 (2010) [10] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), John Wiley and Sons, Inc. · Zbl 0789.26002 [11] Momani, S. M.; Ibrahim, R. W., On a fractional integral equation of periodic functions involving Weyl-Riesz operator in Banach algebras, J. Math. Anal. Appl., 339, 1210-1219 (2008) · Zbl 1136.45010 [12] Oldham, K. B.; Spanier, J., The Fractional Calculus, Math. Sci. Eng. (1974), Academic Press: Academic Press New York/London · Zbl 0428.26004 [13] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press London · Zbl 0918.34010 [14] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach New York · Zbl 0818.26003 [15] Yu, F., Integrable coupling system of fractional soliton equation hierarchy, Phys. Lett. A, 373, 3730-3733 (2009) · Zbl 1233.35172 [16] Zhang, S., The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 252, 804-812 (2000) · Zbl 0972.34004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.