zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations. (English) Zbl 1214.34007
The authors investigate the existence and uniqueness of solutions for the multi-point boundary value problem for fractional differential equations of the form $$D_t^\alpha y(t)= f(t,y(t),D_t^\beta y(t)),\,\,t\in (0,1),\tag1$$ $$y(0)=0, \,\,D_t^\beta y(1)-\sum_{i=1}^{m-2}\zeta_iD_t^\beta y(\xi_i)=y_0,\tag2$$ where $1<\alpha\leq 2$, $0<\beta<1$, $0<\xi_i<1,$ $i=1,2,\dots,m-2$, $\xi_i\geq 0$ with $\gamma=\sum_{i=1}^{m-2}\zeta_i\xi_i^{\alpha-\beta-1}<1$ and $D_t^\alpha$ represents the Riemann-Liouville fractional derivative. The main tool used by the authors is based on fixed point theory. Specifically, they use the contraction mapping principle and the Schauder fixed point theorem.

34A08Fractional differential equations
34B10Nonlocal and multipoint boundary value problems for ODE
47N20Applications of operator theory to differential and integral equations
Full Text: DOI
[1] , Applications of fractional calculus in physics (2000) · Zbl 0998.26002
[2] Podlubny, I.: Fractional differential equations, mathematics in science and engineering, (1999) · Zbl 0924.34008
[3] Sabatier, J.; Agrawal, O. P.; Tenreiro, J. A.; Machado: Advances in fractional calculus, (2007) · Zbl 1116.00014
[4] Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem, Nonlinear anal. 72, 916-924 (2010) · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[5] Salem, Hussein A. H.: On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies, J. comput. Appl. math. 224, 565-572 (2009) · Zbl 1176.34070 · doi:10.1016/j.cam.2008.05.033
[6] Zhong, W.; Lin, W.: Nonlocal and multiple-point boundary value problem for fractional differential equations, Comput. math. Appl. (2009)
[7] Bai, Z. B.; Lü, H. S.: Positive solutions of boundary value problems of nonlinear fractional differential equation, J. math. Anal. appl. 311, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[8] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993) · Zbl 0789.26002
[9] Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. math. Lett. 22, 64-69 (2009) · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001