Approximation of solutions to impulsive functional differential equations. (English) Zbl 1214.34069

The authors consider the impulsive semilinear functional differential equation \[ u'(t)+ Au(t)=f(t,u_t),\quad t\in (0,T), \;t\neq t_k, \]
\[ \Delta u(t_k)=I_k(u(t_k)), \quad k=1,2,\dots, p,\tag{1} \]
\[ u(t)=h(t), \quad t\in [-\tau,0], \]
where \(-A\) is the infinitesimal generator of an analytic semigroup on a separable Hilbert space \(H\), \(I_k:H\to H\), \(\Delta u(t_k)=u(t_k^+)-u(t_k^-)\), \(f:[0,T]\to C_0\) and \(h\in C_0\). Here \(C_0\) consists of all piecewise continuous functions from \([-\tau,0]\) to \(H\). Using fixed point arguments, they prove the existence, uniqueness and convergence of a suitably defined sequence of approximate solutions of problem (1) to the solution of that problem. Some results concerning finite-dimensional approximation of the solutions of (1) – Theorems 4.1 and 4.2 – as well as an illustrating example referring to an impulsive semilinear functional differential equation of parabolic type are also included.


34K30 Functional-differential equations in abstract spaces
34K05 General theory of functional-differential equations
34K45 Functional-differential equations with impulses
47D06 One-parameter semigroups and linear evolution equations
Full Text: DOI


[1] Bazley, N.: Approximation of wave equations with reproducing nonlinearities. Nonlinear Anal. 3, 539–546 (1979) · Zbl 0411.34030 · doi:10.1016/0362-546X(79)90071-3
[2] Bazley, N.: Global convergence of Faedo–Galerkin approximations to nonlinear wave equations. Nonlinear Anal. 4, 503–507 (1980) · Zbl 0448.35062 · doi:10.1016/0362-546X(80)90088-7
[3] Benchohra, M., Ouahabi, A.: Some uniqueness results for impulsive semilinear neutral functional differential equations. Georgian Math. J. 9(3), 423–430 (2002) · Zbl 1019.34077
[4] Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Impulsive functional differential equations with variable times and infinite delay. Int. J. Appl. Math. Sci. 2(1), 130–148 (2005) · Zbl 1096.34058
[5] Dhage, B.C., Ntouyas, S.K.: Existence results for impulsive neutral functional differential inclusions. Topol. Methods Nonlinear Anal. 25(2), 349–361 (2005) · Zbl 1089.34064
[6] Goethel, R.: Faedo–Galerkin approximation in equations of evolution. Math. Methods Appl. Sci. 6, 41–54 (1984) · Zbl 0552.35043 · doi:10.1002/mma.1670060104
[7] Heinz, E., von Wahl, W.: Zu einem Satz von F.W. Browder über nichtlineare Wellengleichungen. Math. Z. 141, 33–45 (1974) · doi:10.1007/BF01236982
[8] Laxshmikantham, V., Bainov, D.D., Simenov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
[9] Miletta, P.D.: Approximation of solutions to evolution equations. Math. Methods Appl. Sci. 17, 753–763 (1994) · Zbl 0822.35059 · doi:10.1002/mma.1670171002
[10] Murakami, H.: On linear ordinary and evolution equations. Funkcial. Ekvac. 9, 151–162 (1966) · Zbl 0173.43503
[11] Ntouyas, S.K.: Existence results for impulsive partial neutral functional differential inclusions. Electron. Differ. Equ. 30, 1–11 (2005) · Zbl 1075.34082
[12] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983) · Zbl 0516.47023
[13] Segal, I.: Nonlinear semigroups. Ann. Math. 78, 339–364 (1963) · Zbl 0204.16004 · doi:10.2307/1970347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.