Rechtman, Ana Existence of periodic orbits for geodesible vector fields on closed 3-manifolds. (English) Zbl 1214.37015 Ergodic Theory Dyn. Syst. 30, No. 6, 1817-1841 (2010). Author’s abstract: “We deal with the existence of periodic orbits of geodesible vector fields on closed 3-manifolds. A vector field is geodesible if there exists a Riemannian metric on the ambient manifold making its orbits geodesics. In particular, Reeb vector fields and vector fields that admit a global section are geodesible. (When the ambient manifold has dimension three and the plane field \(\xi =\{\text{ker}(\alpha )\}\) is a contact structure, or equivalently, \(\alpha \wedge d\alpha \neq 0\), then the vector field \(X\) such that \(\alpha (X)=1\) and \(X\in \text{ker}(d\alpha )\) is the Reeb vector field of \(\alpha\).) We will classify the closed 3-manifolds that admit aperiodic volume-preserving \(C^{\omega }\) geodesible vector fields, and prove the existence of periodic orbits for \(C^{\omega }\) geodesible vector fields (not volume preserving), when the 3-manifold is not a torus bundle over the circle. We will also prove the existence of periodic orbits of \(C^2\) geodesible vector fields on some closed 3-manifolds.” Reviewer: Vladimir P. Kostov (Nice) Cited in 9 Documents MSC: 37C27 Periodic orbits of vector fields and flows Keywords:geodesible vector field; Reeb vector field; periodic orbit × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Paternain, Geodesic Flows (1999) · doi:10.1007/978-1-4612-1600-1 [2] DOI: 10.1017/S0022112086002859 · Zbl 0622.76027 · doi:10.1017/S0022112086002859 [3] Laudenbach, Bull. Soc. Math. France 111 pp 147– (1983) [4] DOI: 10.2307/2118623 · Zbl 0856.57024 · doi:10.2307/2118623 [5] DOI: 10.1007/BF02566410 · Zbl 0859.57017 · doi:10.1007/BF02566410 [6] Gluck, Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern University, Evanston, Ill., 1979) pp 190– (1980) [7] Katok, Introduction to the Modern Theory of Dynamical Systems (1995) · Zbl 0878.58020 · doi:10.1017/CBO9780511809187 [8] DOI: 10.1007/BF02566670 · Zbl 0766.53028 · doi:10.1007/BF02566670 [9] DOI: 10.1088/0951-7715/13/2/306 · Zbl 0982.76021 · doi:10.1088/0951-7715/13/2/306 [10] Hofer, Symplectic Geometry and Topology (Park City, UT, 1997) pp 35– [11] DOI: 10.1017/S0143385702000408 · Zbl 1098.76011 · doi:10.1017/S0143385702000408 [12] DOI: 10.2307/1971187 · Zbl 0418.57013 · doi:10.2307/1971187 [13] Greenberg, Lectures on Algebraic Geometry (1971) [14] DOI: 10.2307/1970854 · Zbl 0231.58009 · doi:10.2307/1970854 [15] Arnold, Topological Methods in Hydrodynamics (1998) · Zbl 0902.76001 [16] Abraham, Manifolds, Tensor Analysis, and Applications (1988) · doi:10.1007/978-1-4612-1029-0 [17] DOI: 10.2307/1970458 · Zbl 0156.43803 · doi:10.2307/1970458 [18] Whitney, Complex Analytic Varieties (1972) · Zbl 0265.32008 [19] Wadsley, J. Differential Geom. 10 pp 541– (1975) [20] DOI: 10.1016/0040-9383(70)90037-6 · Zbl 0177.52103 · doi:10.1016/0040-9383(70)90037-6 [21] DOI: 10.1007/BF02684317 · Zbl 0372.58011 · doi:10.1007/BF02684317 [22] DOI: 10.1016/0022-4049(78)90046-4 · Zbl 0402.57015 · doi:10.1016/0022-4049(78)90046-4 [23] Sikorav, Bull. Soc. Math. France 129 pp 159– (2001) [24] DOI: 10.2307/1969999 · Zbl 0207.22603 · doi:10.2307/1969999 [25] McDuff, J. Differential Geom. 34 pp 143– (1991) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.