zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Applying a fixed point theorem of Krasnosel’skii type to the existence of asymptotically stable solutions for a Volterra-Hammerstein integral equation. (English) Zbl 1214.47049
Summary: Using a fixed point theorem of Krasnosel’skii type, the paper proves the existence of asymptotically stable solutions for a Volterra-Hammerstein integral equation.

47H10Fixed-point theorems for nonlinear operators on topological linear spaces
45G10Nonsingular nonlinear integral equations
47N20Applications of operator theory to differential and integral equations
65J15Equations with nonlinear operators (numerical methods)
Full Text: DOI
[1] Corduneanu, C.: Integral equations and applications, (1991) · Zbl 0714.45002
[2] Avramescu, C.; Vladimirescu, C.: An existence result of asymptotically stable solutions for an integral equation of mixed type, Electronic J. Qualitative theory differ. Equ. 25, 1-6 (2005) · Zbl 1104.47063 · emis:journals/EJQTDE/2005/200525.html
[3] Avramescu, C.; Vladimirescu, C.: Asymptotic stability results for certain integral equations, Electronic J. Differ. equ. 126, 1-10 (2005) · Zbl 1099.47061 · emis:journals/EJDE/Volumes/2005/126/abstr.html
[4] Ngoc, L. T. P.; Long, N. T.: On a fixed point theorem of Krasnoselskii type and application to integral equations, Fixed point theory appl. 2006 (2006) · Zbl 1143.47302 · doi:10.1155/FPTA/2006/30847
[5] Hoa, L. H.; Schmitt, K.: Periodic solutions of functional differential equations of retarded and neutral types in Banach spaces, Boundary value problems for functional differential equations, 177-185 (1995) · Zbl 0842.34082
[6] Lang, S.: Analysis II, (1969) · Zbl 0176.00504