×

Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent. (English) Zbl 1214.60037

Author’s abstract: The class of coalescent processes with simultaneous multiple collisions (\(\Xi \)-coalescents) without proper frequencies is considered. We study the asymptotic behavior of the external branch length, the total branch length and the number of mutations on the genealogical tree as the sample size \(n\) tends to infinity. The limiting random variables arising are characterized via exponential integrals of the subordinator associated with the frequency of singletons of the coalescent. The proofs are based on decompositions into external and internal branches. The asymptotics of the external branches is treated via the method of moments. The internal branches do not contribute to the limiting variables since the number \(C_n\) of collisions for coalescents without proper frequencies is asymptotically negligible compared to \(n\). The results are applied to the two-parameter Poisson-Dirichlet coalescent indicating that this particular class of coalescent processes in many respects behaves approximately as the star-shaped coalescent.

MSC:

60J27 Continuous-time Markov processes on discrete state spaces
92D10 Genetics and epigenetics
60F05 Central limit and other weak theorems
92D15 Problems related to evolution
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Basdevant, A.-L.; Goldschmidt, C., Asymptotics of the allele frequency spectrum associated with the Bolthausen-Sznitman coalescent, Electron. J. Probab., 13, 486-512 (2008), MR2386740 · Zbl 1190.60006
[2] Berestycki, J.; Berestycki, N.; Schweinsberg, J., Beta-coalescents and continuous stable random tress, Ann. Probab., 35, 1835-1887 (2007), MR2349577 · Zbl 1129.60067
[3] Berestycki, J.; Berestycki, N.; Schweinsberg, J., Small-time behavior of Beta-coalescents, Ann. Inst. H. Poincaré Probab. Statist., 44, 214-238 (2008), MR2446321 · Zbl 1214.60034
[4] Bertoin, J., Two-parameter Poisson-Dirichlet measures and reversible exchangeable fragmentation-coalescence processes, Combin. Probab. Comput., 17, 329-337 (2008), MR2410390 · Zbl 1165.60032
[5] Billingsley, P., Probability and Measure (1995), Wiley: Wiley New York, MR1324786 · Zbl 0822.60002
[6] Caliebe, A.; Neininger, R.; Krawczak, M.; Rösler, U., On the length distribution of external branches in coalescence trees: genetic diversity within species, Theor. Popul. Biol., 72, 245-252 (2007), Zbl 1123.92024 · Zbl 1123.92024
[7] Carmona, P.; Petit, F.; Yor, M., On the distribution and asymptotic results for exponential integrals of Lévy processes, (Yor, M., Exponential Functionals and Principal Values Related to Brownian Motion (1997), Biblioteca de la Revista Matematica Iberoamericana, Madrid), 73-121, MR1648657
[8] Delmas, J.-F.; Dhersin, J.-S.; Siri-Jegousse, A., Asymptotic results on the length of coalescent trees, Ann. Appl. Probab., 18, 997-1025 (2008), MR2418236 · Zbl 1141.60007
[9] Drmota, M.; Iksanov, A.; Möhle, M.; Rösler, U., Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent, Stochastic Process. Appl., 117, 1404-1421 (2007), MR2353033 · Zbl 1129.60069
[10] Drmota, M.; Iksanov, A.; Möhle, M.; Rösler, U., A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree, Random Struct. Algorithms, 34, 319-336 (2009), MR2504401 · Zbl 1187.05068
[11] F. Freund, Almost sure asymptotics for mutated external branches of coalescent processes and applications to the number of types, Preprint, 2009.; F. Freund, Almost sure asymptotics for mutated external branches of coalescent processes and applications to the number of types, Preprint, 2009.
[12] Freund, F.; Möhle, M., On the number of allelic types for samples taken from exchangeable coalescents with mutation, Adv. Appl. Probab., 41, 1082-1101 (2009) · Zbl 1202.92061
[13] Freund, F.; Möhle, M., On the time back to the most recent common ancestor and the external branch length of the Bolthausen-Sznitman coalescent, Markov Process. Related. Fields, 15, 387-416 (2009), MR2554368 · Zbl 1203.60110
[14] Gnedin, A.; Hansen, B.; Pitman, J., Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws, Probab. Surv., 4, 146-171 (2007), MR2318403 · Zbl 1189.60050
[15] Gnedin, A.; Iksanov, A.; Möhle, M., On asymptotics of exchangeable coalescents with multiple collisions, J. Appl. Probab., 45, 1186-1195 (2008), MR2484170 · Zbl 1159.60016
[16] B. Haas, G. Miermont, Self-similar scaling limits of non-increasing Markov chains, Preprint, 2009.; B. Haas, G. Miermont, Self-similar scaling limits of non-increasing Markov chains, Preprint, 2009. · Zbl 1263.92034
[17] Handa, K., The two-parameter Poisson-Dirichlet point process, Bernoulli, 15, 1082-1116 (2009), MR2597584 · Zbl 1255.60020
[18] L.F. James, Poisson Dirichlet \(( \alpha, \theta \); L.F. James, Poisson Dirichlet \(( \alpha, \theta \)
[19] G. Kersting, The external length in Kingman’s coalescent, Preprint, 2010.; G. Kersting, The external length in Kingman’s coalescent, Preprint, 2010.
[20] Kingman, J. F.C., On the genealogy of large populations, J. Appl. Probab., 19A, 27-43 (1982), MR0633178 · Zbl 0516.92011
[21] Kingman, J. F.C., The coalescent, Stochastic Process. Appl., 13, 235-248 (1982), MR0671034 · Zbl 0491.60076
[22] Kingman, J. F.C., The representation of partition structures, J. Lond. Math. Soc. (2), 18, 374-380 (1978), MR0509954 · Zbl 0415.92009
[23] A. Marynych, On the asymptotics of moments of linear random recurrences, Preprint, 2009.; A. Marynych, On the asymptotics of moments of linear random recurrences, Preprint, 2009. · Zbl 1249.60032
[24] Möhle, M., On the number of segregating sites for populations with large family sizes, Adv. Appl. Probab., 38, 750-767 (2006), MR2256876 · Zbl 1112.92046
[25] Möhle, M., On sampling distributions for coalescent processes with simultaneous multiple collisions, Bernoulli, 12, 35-53 (2006), MR2202319 · Zbl 1099.92052
[26] Möhle, M.; Sagitov, S., A classification of coalescent processes for haploid exchangeable population models, Ann. Probab., 29, 1547-1562 (2001), MR2024501 · Zbl 1013.92029
[27] Pitman, J., Coalescents with multiple collisions, Ann. Probab., 27, 1870-1902 (1999), MR1742892 · Zbl 0963.60079
[28] Pitman, J., (Combinatorial Stochastic Processes. Combinatorial Stochastic Processes, Lecture Notes in Mathematics, vol. 1875 (2006), Springer: Springer New York), MR2245368 · Zbl 1103.60004
[29] Pitman, J.; Yor, M., The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator, Ann. Probab., 25, 855-900 (1997), MR1434129 · Zbl 0880.60076
[30] Sagitov, S., Convergence to the coalescent with simultaneous multiple mergers, J. Appl. Probab., 40, 839-854 (2003), MR2012671 · Zbl 1052.92044
[31] Schweinsberg, J., Coalescents with simultaneous multiple collisions, Electron. J. Probab., 5, 1-50 (2000), MR1781024 · Zbl 0959.60065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.