Rivasplata, Omar; Rychtář, Jan; Schmuland, Byron Reversibility for diffusions via quasi-invariance. (English) Zbl 1214.60038 Acta Univ. Carol., Math. Phys. 48, No. 1, 3-10 (2007). Summary: Why is the drift coefficient \(b\) associated with a reversible diffusion on \(\mathbb R^d\) given by a gradient? Our explanation is inspired by Handa’s recent results on reversibility and quasi-invariance of the invariant measure. Cited in 1 Document MSC: 60J60 Diffusion processes 28C10 Set functions and measures on topological groups or semigroups, Haar measures, invariant measures 47F05 General theory of partial differential operators 47D07 Markov semigroups and applications to diffusion processes Keywords:diffusion process; infinitesimal generator; reversible measure; quasi-invariant measure; cocycle identity PDF BibTeX XML Cite \textit{O. Rivasplata} et al., Acta Univ. Carol., Math. Phys. 48, No. 1, 3--10 (2007; Zbl 1214.60038) Full Text: EuDML