Hamzavi, M.; Rajabi, A. A.; Hassanabadi, H. Exactly complete solutions of the Dirac equation with pseudoharmonic potential including linear plus Coulomb-like tensor potential. (English) Zbl 1214.81078 Int. J. Mod. Phys. A 26, No. 7-8, 1363-1374 (2011). Summary: We present exact solutions of the Dirac equation with the pseudoharmonic potential including linear as well as Coulomb-like tensor potential with arbitrary spin-orbit coupling number \(\kappa \) under spin and pseudospin symmetry limits. The Nikiforov-Uvarov method is used to obtain energy eigenvalues and corresponding eigenfunctions in closed forms. We show that tensor interaction removes degeneracies between spin and pseudospin doublets. Some numerical results are also given. Cited in 6 Documents MSC: 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics Keywords:Dirac equation; pseudoharmonic potential; linear plus Coulomb-like tensor potential; spin and pseudospin symmetry; Nikiforov-Uvarov method PDF BibTeX XML Cite \textit{M. Hamzavi} et al., Int. J. Mod. Phys. A 26, No. 7--8, 1363--1374 (2011; Zbl 1214.81078) Full Text: DOI References: [1] DOI: 10.1016/j.physrep.2005.04.003 [2] DOI: 10.1088/0031-8949/26/4/003 [3] DOI: 10.1103/PhysRevLett.59.1405 [4] DOI: 10.1016/0375-9474(94)00518-R [5] DOI: 10.1103/PhysRevLett.86.204 [6] DOI: 10.1103/PhysRevC.69.034303 [7] DOI: 10.1103/PhysRevLett.78.436 [8] DOI: 10.1016/0375-9474(69)90077-3 [9] DOI: 10.1016/0370-2693(69)90443-2 [10] DOI: 10.1016/j.amc.2010.01.104 · Zbl 1187.81107 [11] DOI: 10.1088/0305-4470/22/17/002 [12] DOI: 10.1016/0375-9601(91)90333-4 [13] DOI: 10.1103/PhysRevC.69.024319 [14] DOI: 10.1103/PhysRevC.71.034313 [15] DOI: 10.1016/j.physleta.2008.12.029 · Zbl 1227.81152 [16] DOI: 10.1088/1751-8113/40/24/010 · Zbl 1113.81029 [17] DOI: 10.1007/s00601-010-0085-9 [18] DOI: 10.1016/j.aop.2010.05.013 · Zbl 1200.81059 [19] DOI: 10.1007/s00601-010-0095-7 [20] Popov D., J. Res. Phys. 29 pp 41– [21] DOI: 10.1007/s10910-007-9233-y · Zbl 1151.81333 [22] DOI: 10.1016/j.theochem.2006.11.019 [23] DOI: 10.1142/S0218301302001046 [24] DOI: 10.1142/S0217732302008605 · Zbl 1083.81513 [25] Ikhdair S. M., Cent. Eur. J. Phys. 5 pp 516– [26] DOI: 10.1142/S0218301310016594 [27] DOI: 10.1142/S0217732310033402 · Zbl 1194.81065 [28] DOI: 10.1016/j.physleta.2010.08.065 · Zbl 1238.81095 [29] DOI: 10.1088/0031-8949/80/03/035003 · Zbl 1179.81068 [30] DOI: 10.1142/S0218301304002582 [31] DOI: 10.1142/S0129183108012923 · Zbl 1154.81331 [32] DOI: 10.1142/S0217732302008599 · Zbl 1083.81512 [33] DOI: 10.1088/1009-1963/13/3/002 [34] DOI: 10.1016/S0893-9659(03)80032-0 · Zbl 1042.81036 [35] DOI: 10.1088/0031-8949/80/06/065018 · Zbl 1183.81061 [36] DOI: 10.1016/j.physletb.2010.02.070 [37] DOI: 10.1140/epja/i2009-10758-9 [38] DOI: 10.1007/s10773-007-9532-x · Zbl 1140.81365 [39] Goldman I. I., Problems in Quantum Mechanics (1961) [40] DOI: 10.1103/PhysRevC.59.154 [41] DOI: 10.1103/PhysRevC.58.R628 [42] DOI: 10.1007/978-1-4757-1595-8 [43] DOI: 10.1088/0031-8949/80/01/015001 · Zbl 1170.81348 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.