×

zbMATH — the first resource for mathematics

Colored group field theory. (English) Zbl 1214.81170
Summary: Random matrix models generalize to Group Field Theories (GFT) whose Feynman graphs are dual to higher dimensional topological spaces. The perturbative development of the usual GFT’s is rather involved combinatorially and plagued by topological singularities (which we discuss in great detail in this paper), thus very difficult to control and unsatisfactory.
Both these problems simplify greatly for the “colored” GFT (CGFT) model we introduce in this paper. Not only this model is combinatorially simpler but also it is free from the worst topological singularities. We establish that the Feynman graphs of our model are combinatorial cellular complexes dual to manifolds or pseudomanifolds, and study their cellular homology. We also relate the amplitude of CGFT graphs to their fundamental group.

MSC:
81T18 Feynman diagrams
22A26 Topological semilattices, lattices and applications
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Boulatov D.V.: A Model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629 (1992) [arXiv:hep-th/9202074] · Zbl 1020.83539 · doi:10.1142/S0217732392001324
[2] Freidel L.: Group field theory: An overview. Int. J. Theor. Phys. 44, 1769 (2005) [arXiv:hep-th/0505016] · Zbl 1100.83010 · doi:10.1007/s10773-005-8894-1
[3] Oriti, D.: The group field theory approach to quantum gravity, in [15]. [arXiv:gr-qc/0607032] · Zbl 1223.83025
[4] Oriti, D.: Quantum gravity as a quantum field theory of simplicial geometry. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds.) Quantum Gravity. Birkhaeuser, Basel (2007). [arXiv:gr-qc/0512103] · Zbl 1120.83024
[5] Magnen, J., Noui, K., Rivasseau, V., Smerlak, M.: Scaling behaviour of three-dimensional group field theory. Class. Quant. Grav. 26, 185012 (2009) [arXiv:0906.5477[hep-th · Zbl 1176.83066
[6] David F.: A model of random surfaces with nontrivial critical behavior. Nucl. Phys. B 257, 543 (1985) · doi:10.1016/0550-3213(85)90363-3
[7] Ginsparg, P.H.: Matrix models of 2-d gravity. [arXiv:hep-th/9112013] · Zbl 0985.82500
[8] Gross M.: Tensor models and simplicial quantum gravity in > 2-D. Nucl. Phys. Proc. Suppl. 25A, 144 (1992) · Zbl 0957.83511 · doi:10.1016/S0920-5632(05)80015-5
[9] Ambjorn J., Durhuus B., Jonsson T.: Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A 6, 1133 (1991) · Zbl 1020.83537 · doi:10.1142/S0217732391001184
[10] Sasakura N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6, 2613 (1991) · Zbl 1020.83542 · doi:10.1142/S0217732391003055
[11] Williams R.: Quantum Regge calculus, in Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter. Cambridge University Press, Cambridge (2009)
[12] Ambjorn J., Jurkiewicz J., Loll R.: Reconstructing the universe. Phys. Rev. D 72, 064014 (2005) [arXiv:hep-th/0505154] · doi:10.1103/PhysRevD.72.064014
[13] Ambjorn J., Jurkiewicz J., Loll R.: The universe from scratch. Contemp. Phys. 47, 103–117 (2006) [arXiv:hep-th/0509010] · doi:10.1080/00107510600603344
[14] Oriti D.: Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity. Rept. Prog. Phys. 64, 1703 (2001) [arXiv:gr-qc/0106091] · doi:10.1088/0034-4885/64/12/203
[15] Perez A.: Spin foam models for quantum gravity. Class. Quant. Grav. 20, R43 (2003) [arXiv:gr-qc/0301113] · Zbl 1030.83002 · doi:10.1088/0264-9381/20/6/202
[16] Oriti, D. (ed.): Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter. Cambridge University Press, Cambridge (2009) · Zbl 1168.83002
[17] De Pietri R., Petronio C.: Feynman diagrams of generalized matrix models and the associated manifolds in dimension 4. J. Math. Phys. 41, 6671 (2000) [arXiv:gr-qc/0004045] · Zbl 0971.81101 · doi:10.1063/1.1290053
[18] Turaev V.G., Viro O.Y.: State sum invariants of 3 manifolds and quantum 6j symbols. Topology 31, 865 (1992) · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-A
[19] Barrett J.W., Naish-Guzman I.: The Ponzano-Regge model. Class. Quant. Grav. 26, 155014 (2009) [arXiv:0803.3319 [gr-qc]] · Zbl 1172.83017 · doi:10.1088/0264-9381/26/15/155014
[20] Engle J., Pereira R., Rovelli C.: The loop-quantum-gravity vertex-amplitude. Phys. Rev. Lett. 99, 161301 (2007) [arXiv:0705.2388 [gr-qc]] · Zbl 1228.83045 · doi:10.1103/PhysRevLett.99.161301
[21] Engle J., Pereira R., Rovelli C.: Flipped spinfoam vertex and loop gravity. Nucl. Phys. B 798, 251 (2008) [arXiv:0708.1236 [gr-qc]] · Zbl 1234.83009 · doi:10.1016/j.nuclphysb.2008.02.002
[22] Livine E.R., Speziale S.: A new spinfoam vertex for quantum gravity. Phys. Rev. D 76, 084028 (2007) [arXiv:0705.0674 [gr-qc]] · doi:10.1103/PhysRevD.76.084028
[23] Freidel L., Krasnov K.: A new spin foam model for 4d gravity.. class. quant. grav. 25, 125018 (2008) [arXiv:0708.1595 [gr-qc]] · Zbl 1144.83007 · doi:10.1088/0264-9381/25/12/125018
[24] Conrady F., Freidel L.: On the semiclassical limit of 4d spin foam models. Phys. Rev. D 78, 104023 (2008) [arXiv:0809.2280 [gr-qc]] · Zbl 1156.83311 · doi:10.1103/PhysRevD.78.104023
[25] Bonzom V., Livine E.R., Smerlak M., Speziale S.: Towards the graviton from spinfoams: the complete perturbative expansion of the 3d toy model. Nucl. Phys. B 804, 507 (2008) [arXiv:0802.3983 [gr-qc]] · Zbl 1190.83038 · doi:10.1016/j.nuclphysb.2008.05.012
[26] Grosse H., Wulkenhaar R.: Renormalisation of phi**4 theory on non-commutative R**4 in the matrix base. Commun. Math. Phys. 256, 305 (2005) [arXiv:hep-th/0401128] · Zbl 1075.82005 · doi:10.1007/s00220-004-1285-2
[27] Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F.: Renormalization of non-commutative phi**4(4) field theory in x space. Commun. Math. Phys. 267, 515 (2006) [arXiv:hep-th/0512271] · Zbl 1113.81101 · doi:10.1007/s00220-006-0055-8
[28] Disertori M., Gurau R., Magnen J., Rivasseau V.: Vanishing of beta function of non commutative phi(4)**4 theory to all orders. Phys. Lett. B 649, 95 (2007) [arXiv:hep-th/0612251] · Zbl 1248.81253 · doi:10.1016/j.physletb.2007.04.007
[29] Geloun J.B., Gurau R., Rivasseau V.: Vanishing beta function for Grosse-Wulkenhaar model in a magnetic field. Phys. Lett. B 671, 284 (2009) [arXiv:0805.4362 [hep-th]] · doi:10.1016/j.physletb.2008.12.027
[30] Thurston, W.P.: Three-Dimensional Geometry and Topology: Vol 1. University Presses of California, Columbia and Princeton, ISBN 13: 9780691083049, ISBN 10: 0691083045
[31] Kozlov, D.: Combinatorial Algebraic Topology. Springer, Heidelberg, ISBN-10: 354071961X, ISBN-13: 978-3540719618
[32] Freidel L., Gurau R., Oriti D.: Group field theory renormalization–the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009) [arXiv:0905.3772 [hep-th]] · doi:10.1103/PhysRevD.80.044007
[33] Mulazzani M.: Lins-Mandel graphs representing 3-manifolds. Discr. Math. 140, 107 (1995) · Zbl 0841.57026 · doi:10.1016/0012-365X(93)E0177-6
[34] Alexandrov, P.S.: Combinatorial Topology. Dover Publications, ISBN-10: 0486401790, ISBN-13: 978-0486401799
[35] Hatcher, A.: Algebraic Topology. Cambridge University Press, ISBN: 0-521-79160-X, ISBN:0-521-79540-0 · Zbl 1044.55001
[36] Mulase, M., Penkava, M.: Volume of representation varieties. [arXiv:math/0212012] · Zbl 1077.30039
[37] Fairbairn W.J., Livine E.R.: 3d spinfoam quantum gravity: matter as a phase of the group field theory. Class. Quant. Grav. 24, 5277 (2007) [arXiv:gr-qc/0702125] · Zbl 1126.83303 · doi:10.1088/0264-9381/24/20/021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.