zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The antiferromagnetic transition for the square-lattice Potts model. (English) Zbl 1214.82029
Summary: We solve in this paper the problem of the antiferromagnetic transition for the $Q$-state Potts model (defined geometrically for $Q$ generic using the loop/cluster expansion) on the square lattice. This solution is based on the detailed analysis of the Bethe ansatz equations (which involve staggered source terms of the type “real” and “anti-string”) and on extensive numerical diagonalization of transfer matrices. It involves subtle distinctions between the loop/cluster version of the model, and the associated RSOS and (twisted) vertex models. The essential result is that the twisted vertex model on the transition line has a continuum limit described by two bosons, one which is compact and twisted, and the other which is not, with a total central charge $c=2-\frac6t$ for $\sqrt Q=2\cos\frac\pi t$. The non-compact boson contributes a continuum component to the spectrum of critical exponents. For $Q$ generic, these properties are shared by the Potts model. For $Q$ a Beraha number, i.e., $Q=4\cos\sp 2\frac\pi n$ with $n$ integer, and in particular $Q$ integer, the continuum limit is given by a “truncation” of the two boson theory, and coincides essentially with the critical point of parafermions $Z_{n-2}$. Moreover, the vertex model, and, for $Q$ generic, the Potts model, exhibit a first-order critical point on the transition line -- that is, the antiferromagnetic critical point is not only a point where correlations decay algebraically, but is also the locus of level crossings where the derivatives of the free energy are discontinuous. In that sense, the thermal exponent of the Potts model is generically equal to $\nu=\frac12$. Things are however profoundly different for $Q$ a Beraha number. In this case, the antiferromagnetic transition is second order, with the thermal exponent determined by the dimension of the $\psi_1$ parafermion, $\nu=\frac{t-2}2$. As one enters the adjacent “Berker-Kadanoff” phase, the model flows, for $t$ odd, to a minimal model of CFT with central charge $c=1-\frac6{(t-1)t}$, while for $t$ even it becomes massive. This provides a physical realization of a flow conjectured long ago by Fateev and Zamolodchikov in the context of $Z_N$ integrable perturbations. Finally, though the bulk of the paper concentrates on the square-lattice model, we present arguments and numerical evidence that the antiferromagnetic transition occurs as well on other two-dimensional lattices.

82B26Phase transitions (general)
81T40Two-dimensional field theories, conformal field theories, etc.
82B20Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs
82B23Exactly solvable models; Bethe ansatz
Full Text: DOI
[1] Martin, P. P.: Potts models and related problems in statisticals mechanics. (1991)
[2] Saleur, H.: Nucl. phys. B. 360, 219 (1991)
[3] Pasquier, V.; Saleur, H.: Nucl. phys. B. 330, 523 (1990)
[4] Essler, F.; Frahm, H.; Saleur, H.: Nucl. phys. B. 712, 513 (2005)
[5] Jacobsen, J. L.; Read, N.; Saleur, H.: Phys. rev. Lett.. 90, 090601 (2003)
[6] Jacobsen, J. L.; Salas, J.; Sokal, A. D.: J. stat. Phys.. 119, 1153-1281 (2005)
[7] Kasteleyn, P. W.; Fortuin, C. M.: J. phys. Soc. jpn. Suppl.. 26, 11 (1969)
[8] Fortuin, C. M.; Kasteleyn, P. W.: Physica. 57, 536 (1972)
[9] Di Francesco, P.; Saleur, H.; Zuber, J. B.: J. stat. Phys.. 49, 57 (1987)
[10] Jacobsen, J. L.; Salas, J.:
[11] Baxter, R. J.; Kelland, S. B.; Wu, F. Y.: J. phys. A. 9, 397 (1976)
[12] Read, N.; Saleur, H.: Nucl. phys. B. 613, 409 (2001)
[13] Baxter, R. J.: Proc. R. Soc. London. 383, 43 (1982)
[14] Baxter, R. J.: Stud. appl. Math.. 50, 51 (1971)
[15] Reshetikhin, N. Yu.; Saleur, H.: Nucl. phys. B. 419, 507 (1994)
[16] Alcaraz, F. C.; Barber, M. N.; Batchelor, M. T.: Ann. phys. (N.Y.). 182, 280 (1988)
[17] De Vega, H.; Lopes, E.: Nucl. phys. B. 362, 261 (1991)
[18] Jacobsen, J. L.; Saleur, H.: Nucl. phys. B. 716, 439 (2005)
[19] Affleck, I.: E.brézinj.zinn-justinfields, strings and critical phenomena. Fields, strings and critical phenomena (1989)
[20] Pasquier, V.: J. phys. A. 20, L1229 (1987)
[21] Andrews, G. E.; Baxter, R. J.; Forrester, P. J.: J. stat. Phys.. 35, 193 (1984)
[22] Huse, D.: Phys. rev. B. 30, 3908 (1984)
[23] Zamolodchikov, A. B.; Fateev, V. A.: Sov. phys. JETP. 62, 215 (1985)
[24] Jayaraman, T.; Narain, K. S.; Sarmadi, M. H.: Nucl. phys. B. 343, 418 (1990)
[25] Gepner, D.; Qiu, Z.: Nucl. phys. B. 285, 423 (1987)
[26] Distler, J.; Qiu, Z.: Nucl. phys. B. 336, 533 (1990)
[27] Felder, G.: Nucl. phys. B. 324, 548 (1989)
[28] Fateev, V.; Zamolodchikov, Al.: Sov. phys. JETP. 63, 913 (1986)
[29] Fateev, V.; Zamolodchikov, Al.: Phys. lett. B. 271, 91 (1991)
[30] Fateev, V.: Nucl. phys. B. 473, 509 (1996)
[31] Asorey, M.; Esteve, J. G.; Salas, J.: Phys. rev. B. 48, 3626 (1993)
[32] Nienhuis, B.: Phys. rev. Lett.. 49, 1062 (1982)
[33] Pruisken, A. M. M.; Baranov, M. A.; Voropaev, M.: Phys. rev. Lett.. 505, 4432 (2003)
[34] Baxter, R. J.; Temperley, H. N. V.; Ashley, S. E.: Proc. R. Soc. A. 358, 535 (1978)
[35] Bassi, Z.; Leclair, A.: Nucl. phys. B. 578, 577 (2000)