zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A closed-form exact solution for pricing variance swaps with stochastic volatility. (English) Zbl 1214.91115
Summary: We present a highly efficient approach to price variance swaps with discrete sampling times. We have found a closed-form exact solution for the partial differential equation (PDE) system based on the Heston’s two-factor stochastic volatility model embedded in the framework proposed by Little and Pant. In comparison with the previous approximation models based on the assumption of continuous sampling time, the current research of working out a closed-form exact solution for variance swaps with discrete sampling times at least serves for two major purposes: (i) to verify the degree of validity of using a continuous-sampling-time approximation for variance swaps of relatively short sampling period; (ii) to demonstrate that significant errors can result from still adopting such an assumption for a variance swap with small sampling frequencies or long tenor. Other key features of our new solution approach include the following: (1) with the newly found analytic solution, all the hedging ratios of a variance swap can also be analytically derived; (2) numerical values can be very efficiently computed from the newly found analytic formula.

91G20Derivative securities
91G80Financial applications of other theories (stochastic control, calculus of variations, PDE, SPDE, dynamical systems)
35Q91PDEs in connection with game theory, economics, social and behavioral sciences
Full Text: DOI