×

Sliding mode control: a survey with applications in math. (English) Zbl 1214.93030

Summary: The paper presents a brief survey on variable structure control systems with sliding modes. Starting from a general case of sliding modes in dynamical systems with discontinuous right-hand side, classic approaches to sliding mode control systems are considered and some basic results about the control of uncertain systems are given. Then, higher-order sliding modes are presented as a tool to remove discontinuity from the control action, to deal with higher relative degree systems and to improve the accuracy of the real sliding mode behavior when the discrete time implementation is considered.
Finally, three applications of the sliding mode control theory to applied math problems are presented: the numerical solution of constrained ODEs, the real-time differentiation, and the problem of finding the zeroes of nonlinear algebraic systems. The first is an almost straightforward application of the sliding mode control theory, while the last two are accomplished by computing the solution of properly defined dynamical systems. Some simulations are reported to clarify the approach.

MSC:

93B12 Variable structure systems
93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abate, A.; D’Innocenzo, A.; Di Benedetto, M.D.; Sastry, S., Understanding deadlock and livelock behaviors in hybrid control systems, Nonlinear anal.: hybrid syst., 3, 150-162, (2009) · Zbl 1166.93304
[2] Athans, M.; Falb, P.L., Optimal control, (1966), McGraw-Hill · Zbl 0186.22501
[3] Bhaya, A.; Kaszkurewicz, E., Control perspectives on numerical algorithms and matrix problems, advances in design and control series, (2006), SIAM · Zbl 1128.93001
[4] Bhaya, A.; Kaszkurewicz, E., A control-theoretic approach to the design of zero finding numerical methods, IEEE trans. autom. control, 51, 1014-1026, (2007) · Zbl 1366.93171
[5] Bandyopadhyay, B.; Janardhanan, S., Discrete-time sliding mode control—A multirate output feedback approach, lecture notes in control and information sciences, LNCIS, 323, (2006), Springer-Verlag Berlin, Heidelberg · Zbl 1132.93322
[6] Bartolini, G.; Zolezzi, T., Variable structure systems nonlinear in the control law, IEEE trans. autom. control, 30, 681-684, (1985) · Zbl 0568.93034
[7] Bartolini, G.; Ferrara, A.; Usai, E., Chattering avoidance by second order sliding mode control, IEEE trans. autom. control, 43, 241-246, (1998) · Zbl 0904.93003
[8] G. Bartolini, A. Ferrara, S. Spurgeon (Eds.), Special Issue “New Trends in Sliding Mode Control”, Int. J. Robust Nonlinear Control, 7 (4) (1998).
[9] Bartolini, G.; Ferrara, A.; Stotsky, A.A., Robustness and performance of an indirect adaptive control scheme in presence of bounded disturbances, IEEE trans. autom. control, 44, 789-793, (1999) · Zbl 0957.93047
[10] G. Bartolini, A. Ferrara, A. Levant, E. Usai, On second order sliding mode controllers, in: K.D. Young, Ü. Özgüner (Eds.), Variable Structure Systems, Sliding Mode and Nonlinear Control, Lecture Notes in Control and Information Sciences, LNCIS 247, Springer-Verlag, London, 1999, pp. 329-350. · Zbl 0940.93018
[11] Bartolini, G.; Ferrara, A.; Usai, E.; Utkin, V.I., On multi-input chattering-free second-order sliding mode control, IEEE trans. autom. control, 45, 1711-1717, (2000) · Zbl 0990.93012
[12] Bartolini, G.; Pisano, A.; Usai, E., First and second derivative estimation by sliding mode technique, J. signal process., 4, 167-176, (2000)
[13] Bartolini, G.; Pisano, A.; Usai, E., Global stabilization for nonlinear uncertain systems with unmodeled actuator dynamics, IEEE trans. autom. control, 46, 1826-1832, (2001) · Zbl 1015.93057
[14] Bartolini, G.; Pisano, A.; Usai, E., Digital second-order sliding mode control for uncertain nonlinear systems, Automatica, 37, 1371-1377, (2001) · Zbl 0995.93012
[15] G. Bartolini, S. Pillosu, A. Pisano, E. Usai, Time-optimal stabilization for a third-order integrator: a robust state-feedback implementation, in: F. Colonius, L. Gruene (Eds.), Dynamics, Bifurcations and Control, Lecture Notes in Control and Information Sciences, LNCIS 273, Springer Verlag, Heidelberg, 2001, pp. 131-144. · Zbl 1083.93515
[16] G. Bartolini, A. Levant, A. Pisano, E. Usai, Higher-order sliding modes for output-feedback control of nonlinear uncertain systems, in: X. Yu, J.X. Xu (Eds.), Variable Structure Systems: Towards the 21st Century, Lecture Notes in Control and Information Sciences, LNCIS 274, Springer-Verlag, Berlin, 2002, pp. 83-108. · Zbl 1009.93009
[17] Bartolini, G.; Pisano, A.; Punta, E.; Usai, E., A survey of applications of second-order sliding mode control to mechanical systems, Int. J. control, 76, 875-892, (2003) · Zbl 1070.93011
[18] Bartolini, G.; Punta, E.; Zolezzi, T., Simplex method for nonlinear uncertain sliding mode control, IEEE trans. autom. control, 49, 922-940, (2004) · Zbl 1365.93065
[19] Bartolini, G.; Pisano, A.; Usai, E., On the finite-time stabilization of uncertain nonlinear systems with relative degree three, IEEE trans. autom. control, 52, 2134-2141, (2007) · Zbl 1366.93486
[20] Bartolini, G.; Punta, E.; Zolezzi, T., Approximability properties for second order sliding mode control systems, IEEE trans. autom. control, 52, 1813-1825, (2007) · Zbl 1366.93307
[21] ()
[22] A. Bartoszewicz, O. Kaynak, V.I. Utkin (Eds.), Special section on sliding mode control in industrial applications, IEEE Trans. Ind. Electron. 55 (11) (2008).
[23] Boiko, I.; Fridman, L.; Pisano, A.; Usai, E., Analysis of chattering in systems with second-order sliding modes, IEEE trans. autom. control, 52, 2085-2102, (2007) · Zbl 1366.93378
[24] Boiko, I.; Fridman, L.; Iriarte, R.; Pisano, A.; Usai, E., Parameter tuning of second-order sliding mode controllers for linear plants with dynamic actuators, Automatica, 42, 833-839, (2006) · Zbl 1137.93335
[25] Compere, M.D.; Longoria, R.G., Combined DAE and sliding mode control methods for simulation of constrained mechanical systems, J. dyn. syst. meas. control – trans. ASME, 122, 691-698, (2000)
[26] Cortes, J., Discontinuous dynamical systems—a tutorial on solutions, nonsmooth analysis and stability, IEEE control syst. mag., 28, 3, 36-73, (2008) · Zbl 1395.34023
[27] Cunha, J.P.V.S.; Hsu, L.; Costa, R.R.; Lizarralde, F., Output-feedback model-reference sliding mode control of uncertain multivariable systems, IEEE trans. autom. control, 48, 2245-2250, (2003) · Zbl 1364.93121
[28] Dabroom, A.; Khalil, H.K., Discrete-time implementation of high-gain observers for numerical differentiation, Int. J. control, 72, 1523-1537, (1999) · Zbl 0941.93541
[29] Dabroom, A.; Khalil, H.K., Output-feedback sampled-data control of nonlinear systems using high-gain observers, IEEE trans. autom. control, 46, 1712-1725, (2001) · Zbl 1026.93034
[30] Damiano, A.; Gatto, G.L.; Marongiu, I.; Pisano, A., Second-order sliding-mode control of DC drives, IEEE trans. ind. electron., 51, 364-373, (2004)
[31] Davila, J.; Fridman, L.; Levant, A., Second-order SM observer for mechanical systems, IEEE trans. autom. control, 50, 1785-1789, (2005) · Zbl 1365.93071
[32] DeCarlo, R.A.; Zak, S.H.; Matthews, G.P., Variable structure control of nonlinear multivariable systems: A tutorial, Proc. IEEE, 76, 212-232, (1988)
[33] Dieci, L.; Lopez, L., Sliding motion in Filippov differential systems: theoretical results and a computational approach, SIAM J numer. anal., 47, 2023-2051, (2009) · Zbl 1197.34009
[34] Diop, S.; Grizzle, J.W.; Moraal, P.E.; Stefanopolou, A., Interpolation and numerical differentiation for observer design, (), 1329-1333
[35] Drakunov, S.V.; Utkin, V.I., Sliding mode in dynamic systems, Int. J. control, 55, 1029-1037, (1990) · Zbl 0745.93031
[36] Draz˘enović, B., The invariance conditions in variable structure systems, Automatica, 5, 287-295, (1969) · Zbl 0182.48302
[37] Edwards, C.; Spurgeon, S.K., Sliding mode stabilisation of uncertain systems using only output information, Int. J. control, 62, 1129-1144, (1995) · Zbl 0849.93012
[38] Edwards, C.; Spurgeon, S.K., Sliding mode control: theory and applications, (1998), Taylor and Francis Ltd. London
[39] Edwards, C.; Spurgeon, S.K.; Patton, R.J., Sliding mode observers for fault detection and isolation, Automatica, 39, 541-553, (2000) · Zbl 0968.93502
[40] ()
[41] Eichstaedt, B., Multivariable closed-loop deadbeat control: a polynomial-matrix approach, Automatica, 18, 589-593, (1982) · Zbl 0497.93008
[42] Emelyanov, S.V.; Korovin, S.K.; Levantovsky, L.V., Higher order sliding regimes in the binary control systems, Sov. phys. dokl., 31, 291-293, (1986) · Zbl 0612.93035
[43] Emelyanov, S.V.; Korovin, S.K., Control of complex and uncertain systems—new types of feedback, (2000), Springer London · Zbl 0967.93004
[44] Esfandiari, F.; Khalil, H.K., Output-feedback stabilization of fully linearizable systems, Int. J. control, 56, 1007-1037, (1992) · Zbl 0762.93069
[45] Feng, Y.; Yu, X.; Man, Z., Non-singular terminal sliding mode control of rigid manipulators, Automatica, 38, 2159-2167, (2002) · Zbl 1015.93006
[46] Filippov, A.F., Differential equations with discontinuous right-hand side, (1988), Kluwer Dordrecht, The Netherlands · Zbl 0664.34001
[47] Floquet, T.; Barbot, J.P., An observability form for linear systems with unknown inputs, Int. J. control, 79, 132-139, (2006) · Zbl 1122.93015
[48] Francis, B.A.; Wonham, W.M., The internal model principle of control theory, Automatica, 12, 457-465, (1976) · Zbl 0344.93028
[49] L. Fridman, A. Levant, Higher order sliding modes as a natural phenomenon in control theory, in: F. Garofalo, L. Glielmo (Eds.), Robust Control via Variable Structure and Lyapunov Techniques, Lecture Notes in Control and Information Science, LNCIS 217, Springer-Verlag, London, 1996, pp. 107-133. · Zbl 0854.93021
[50] Fridman, L.; Levant, A., Higher order sliding modes, (), 53-101
[51] L.M. Fridman, Sliding mode control for systems with fast actuators: singularly perturbed approach, in: X. Yu, J.X. Xu (Eds.), Variable Structure Systems, Sliding Mode and Nonlinear Control, Variable Structure Systems: Towards the 21st Century, Lecture Notes in Control and Information Sciences, LNCIS 274, Springer-Verlag, Berlin, 2002, pp. 391-415. · Zbl 1016.93015
[52] Fridman, L., Chattering analysis in sliding mode systems with inertial sensors, Int. J. control, 76, 906-912, (2003) · Zbl 1062.93011
[53] L.M. Fridman (Ed.), Special Issue “Dedicated to Vadim Utkin on the Occasion of his 65th Birthday, Int. J. Control, 76 (9/10) (2003).
[54] Furuta, K., Sliding mode control of a discrete system, Syst. control lett., 14, 145-152, (1990) · Zbl 0692.93043
[55] ()
[56] Haimo, V.T., Finite time controllers, SIAM J. control optimiz., 24, 760-770, (1986) · Zbl 0603.93005
[57] Isidori, A., Nonlinear control systems, third edition, (1995), Springer Verlag Berlin
[58] Kaynak, O.; Erbatur, K.; Ertugrul, M., The fusion of computationally intelligent methodologies and sliding-mode control—a survey, IEEE trans. ind. electron., 48, 4-17, (2001)
[59] Khalil, H.K., Nonlinear systems, third edition, (2002), Prentice Hall Upper Saddle River, NJ
[60] Korovin, S.K.; Utkin, V.I., Using sliding modes in static optimization, Automatica, 10, 525-532, (1974) · Zbl 0365.90112
[61] Kuc˘era, V., A dead-beat servo problem, Int. J. control, 32, 107-113, (1980) · Zbl 0438.93048
[62] Lee, H.; Utkin, V.I., Chattering suppression methods in sliding mode control systems, Annu. rev. control, 31, 178-188, (2007)
[63] Levaggi, L.; Villa, L., On the regularization of sliding modes, SIAM J. control optimiz.-JCO, 18, 878-894, (2007) · Zbl 1143.93010
[64] Levant, A., Sliding order and sliding accuracy in sliding mode control, Int. J. control, 58, 1247-1263, (1993) · Zbl 0789.93063
[65] Levant, A., Robust exact differentiation via sliding mode technique, Automatica, 34, 379-384, (1998) · Zbl 0915.93013
[66] Levant, A.; Pridor, A.; Gitizadeh, R.; Yaesh, I.; Ben-Asher, J.Z., Aircraft pitch control via second order sliding technique, J. guid. control dyn., 23, 586-594, (2000)
[67] Levant, A., Universal SISO sliding-mode coontrollers with finite-time convergence, IEEE trans. autom. control, 46, 1447-1451, (2001) · Zbl 1001.93011
[68] Levant, A., Quasi-continuous high-order sliding mode controllers, IEEE trans. autom. control, 50, 1812-1816, (2005) · Zbl 1365.93072
[69] Levant, A., Higher-order sliding modes, differentiation and output-feedback control, Int. J. control, 76, 924-941, (2003) · Zbl 1049.93014
[70] Levant, A., Homogeneity approach to high-order sliding mode design, Automatica, 41, 823-830, (2005) · Zbl 1093.93003
[71] Levant, A., Principles of 2-sliding mode design, Automatica, 43, 576-586, (2007) · Zbl 1261.93027
[72] McClamroch, N.H.; Wang, D., Feedback stabilization and tracking of constrained robots, IEEE trans. autom. control, 33, 419-426, (1988) · Zbl 0648.93045
[73] Milosavljevic, C., General conditions for the existence of a quasisliding mode on the switching hyperplane in discrete variable structure systems, Autom. remote control, 46, 307-314, (1985) · Zbl 0583.93043
[74] E.A. Misawa, V.I. Utkin (Eds.), Special Issue on Variable Structure Systems, J. Dyn. Syst. Meas. Control - Trans. ASME 122 (December) (2000).
[75] Moreno, J.A.; Osorio, M., A Lyapunov approach to second – order sliding mode controllers and observers, (), 2856-2861
[76] Orlov, Y., Finite time stability and robust control synthesis of uncertain switched systems, SIAM J. control optimiz., 43, 4, 1253-1271, (2005) · Zbl 1085.93021
[77] Pan, Y.; Özgüner, Ü., Discrete-time extremum seeking algorithms, (), 3147-3152
[78] Panteley, E.; Stotsky, A., Adaptive trajectory/force control scheme for constrained robot manipulators, Int. J. adapt. control signal process., 7, 489-496, (1993) · Zbl 0791.93058
[79] Polyakov, A.; Poznyak, A., Lyapunov function design for finite – time convergence analysis of “twisating“ and “super – twisating” second order sliding mode controllers, (), 153-158
[80] Poznyak, A.S.; Yu, W.; Sanchez, E.N., Identification and control of unknown chaotic systems via dynamic neural networks, IEEE trans. circ. syst.-I, 46, 1491-1495, (1999) · Zbl 1055.93564
[81] Rao, S.; Utkin, V.; Buss, M., Simulation of constrained dynamic multibody systems using sliding mode control theory, (), 7-12
[82] Šabanović, A.; Izosimov, D., Application of sliding modes to induction motors, IEEE trans. ind. appl., 17, 41-49, (1981)
[83] ()
[84] Scarratt, J.C.; Zinober, A.; Mills, R.E.; Rios-Bolivar, M.; Ferrara, A.; Giacomini, L., Dynamical adaptive first and second-order sliding backstepping control of nonlinear nontriangular uncertain systems, J. dyn. sys. meas. control – trans. ASME, 122, 746-752, (2000)
[85] Shkolnikov, I.A.; Shtessel, Y.B., Tracking controller design for a class of nonminimum-phase systems via the method of system center, IEEE trans. autom. control, 46, 1639-1643, (2001) · Zbl 1031.93081
[86] Shraim, H.; Ouladsine, M.; Fridman, L., Sliding mode observers to replace vehicles expensive sensors and to preview driving critical situations, Int. J. vehicle auton. syst., 5, 3/4, 345-361, (2007)
[87] Shtessel, Y.; Buffington, J.; Banda, S., Tailless aircraft flight control using multiple time scale reconfigurable sliding modes, IEEE trans. control syst. technol., 10, 288-296, (2002)
[88] Shtessel, Y.B.; Shkolnikov, I.A.; Brown, M.D.J., An asymptotic second-order smooth sliding mode control, Asian J. control, 5, 498-504, (2003)
[89] Sira-Ramirez, H., On the dynamical sliding mode control of nonlinear systems, Int. J. control, 57, 1039-1061, (1993) · Zbl 0772.93040
[90] Sira-Ramirez, H., Dynamic second-order sliding mode control of the hovercraft vessel, IEEE trans. control syst. technol., 10, 860-865, (2002)
[91] Slotine, J.-J.E.; Hedricks, J.K.; Misawa, E.A., On sliding observersfor nonlinear systems, J. dyn. syst. meas. control – trans. ASME, 109, 245-252, (1987) · Zbl 0661.93011
[92] Slotine, J.-J.E.; Li, W., Applied nonlinear control, (1991), Prentice Hall Int Englewood Cliffs, NJ
[93] Slotine, J.-J.; Sastry, S.S., Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator, Int. J. control, 32, 465-492, (1983) · Zbl 0519.93036
[94] Spurgeon, S.K., Sliding mode observers—a survey, Int. J. syst. sci., 39, 751-768, (2008) · Zbl 1283.93066
[95] Teel, A.; Praly, L., Tools for semi-global stabilization via partial state and output feedback, SIAM J. control optimiz., 33, 1443-1488, (1995) · Zbl 0843.93057
[96] Tsypkin, Y.Z., Relay control systems, (1984), Cambridge Press UK · Zbl 0571.93001
[97] Utkin, V.I., Variable structure systems with sliding modes, IEEE trans. autom. control, 22, 211-222, (1977) · Zbl 0382.93036
[98] Utkin, V.I., Sliding modes in control and optimization, (1992), Springer Verlag Berlin · Zbl 0748.93044
[99] Utkin, V.I., Sliding mode control design principles and applications to electric drives, IEEE trans. ind. electron., 40, 23-36, (1993)
[100] Utkin, V.I.; Guldner, J.; Shi, J., Sliding modes in control in electromechanical systems, (1999), Taylor & Francis
[101] V.I. Utkin, First Stage of VSS: people and events, in: X. Yu, J.-X. Xu (Eds.), Variable Structure Systems: Towards the 21st Century, Lecture Notes in Control and Information Science, LNCIS 274, Springer Verlag, London, U.K., 2002, pp. 1-33. · Zbl 1101.93300
[102] Wu, W.-C.; Drakunov, S.V.; Özgüner, Ü., An \(\mathcal{O}(T^2)\) boundary layer in sliding mode for sampled-data systems, IEEE trans. autom. control, 45, 482-484, (2000) · Zbl 0972.93039
[103] Yan, Z.; Jin, C.; Utkin, V.I., Sensorless sliding mode control of induction motors, IEEE trans. ind. electron., 47, 1286-1297, (2000)
[104] Yoshikawa, T., Dynamic hybrid position/force control of robot manipulators, IEEE J. robot. autom., 5, 386-392, (1987)
[105] Young, K.-K.D.; Kwatny, H.G., Variable structure servomechanism design and its application to overspeed protection control, Automatica, 18, 385-400, (1982) · Zbl 0485.93047
[106] Young, K.D.; Utkin, V.I.; Özgüner, Ü., A control engineers guide to sliding mode control, IEEE trans. control syst. technol., 7, 328-342, (1999)
[107] ()
[108] Yu, X.; Xu, J.X., Nonlinear derivative estimator, Electron. lett., 32, 1445-1447, (1996)
[109] ()
[110] Zelikin, M.; Borisov, V., Theory of chattering control with applications to austronautics, robotics, economics, and engineering, (1994), Birkhauser Boston · Zbl 0820.70003
[111] Zhihong, M.; Paplinsky, A.P.; Wu, H.R., A robust MIMO terminal sliding mode control for rigid robotic manipulators, IEEE trans. autom. control, 39, 2464-2468, (1994) · Zbl 0825.93551
[112] ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.