×

zbMATH — the first resource for mathematics

On expressible sets of geometric sequences. (English) Zbl 1215.11077
The paper under review is concerned with the set of real numbers \(x\) which can be expressed in the form \[ x = \sum_{n=1}^\infty {1 \over {c_n A^n}}, \] where \(A >3\) is a real number and \(\{c_n\}\) is some sequence of natural numbers. The set of such numbers is called the expressible set of the geometric sequence \(A^n\).
It is shown that this set is Borel and contains the interval \((0,1/((A-1)(\lceil A \rceil -2))]\), and upper and lower bounds on the Lebesgue measure of the set are obtained. In the case when \(A = 4\), the upper and lower bounds coincide, and the measure of the expressible set is equal to \(1/4\). In this case, the interval shown to be contained in the set is equal to \((0, 1/6]\). Finally, the order at which the Lebesgue measure of the expressible set tends to zero as \(A\) increases is studied. It is shown that a lower bound decays like \(A^{-2}\), while an upper bound decays like \(A^{-3/2}\). The exact asymptotic decay remains an open problem.

MSC:
11K55 Metric theory of other algorithms and expansions; measure and Hausdorff dimension
PDF BibTeX XML Cite
Full Text: DOI Euclid