×

Planar polynomials for commutative semifields with specified nuclei. (English) Zbl 1215.12012

Summary: We consider the implications of the equivalence of commutative semifields of odd order and planar Dembowski-Ostrom polynomials. This equivalence was outlined recently by Coulter and Henderson [Adv. Math. 217, No. 1, 282–304 (2008; Zbl 1194.12007)]. In particular, following a more general statement concerning semifields we identify a form of planar Dembowski-Ostrom polynomial which must define a commutative semifield with the nuclei specified. Since any strong isotopy class of commutative semifields must contain at least one example of a commutative semifield described by such a planar polynomial, to classify commutative semifields it is enough to classify planar Dembowski-Ostrom polynomials of this form and determine when they describe non-isotopic commutative semifields. We prove several results along these lines. We end by introducing a new commutative semifield of order \(3^8\) with left nucleus of order 3 and middle nucleus of order \(3^2\).

MSC:

12K10 Semifields
11T06 Polynomials over finite fields

Citations:

Zbl 1194.12007

Software:

Magma
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barlotti A (1957). Le possibili configurazioni del sistema delle coppie punto-retta (A,a) per cui un piano grafico risulta (A,a)-transitivo. Boll. Un Mat Ital 12: 212–226 · Zbl 0077.13802
[2] Blokhuis A, Coulter RS, Henderson M, O’Keefe CM (2001) Permutations amongst the Dembowski-Ostrom polynomials, Finite fields and applications: Proceedings of the Fifth international conference on finite fields and applications (Jungnickel D, Niederreiter H, eds), pp 37–42
[3] Bosma W, Cannon J and Playoust C (1997). The Magma algebra system I: The user language. J Symbolic Comput 24: 235–265 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[4] Coulter RS, Henderson M. Commutative presemifields and semifields. Adv Math, to appear · Zbl 1194.12007
[5] Coulter RS and Matthews RW (1997). Planar functions and planes of Lenz-Barlotti class II. Des Codes Cryptogr 10: 167–184 · Zbl 0872.51007 · doi:10.1023/A:1008292303803
[6] Dembowski P and Ostrom TG (1968). Planes of order n with collineation groups of order n 2. Math Z 103: 239–258 · Zbl 0163.42402 · doi:10.1007/BF01111042
[7] Dickson LE (1906). On commutative linear algebras in which division is always uniquely possible. Trans Amer Math Soc 7: 514–522 · doi:10.1090/S0002-9947-1906-1500764-6
[8] Hall M (1943). Projective planes. Trans Amer Math Soc 54: 229–277 · Zbl 0060.32209 · doi:10.1090/S0002-9947-1943-0008892-4
[9] Henderson M, Matthews R (1999) Composition behaviour of sub-linearised polynomials over a finite field In Finite fields: theory, applications and algorithms (Mullin RC, Mullen GL, eds), Contemporary mathematics, vol. 225, American Mathematical Society, pp 67–75 · Zbl 1126.11344
[10] Hsiang J, Hsu DF and Shieh YP (2004). On the hardness of counting problems of complete mappings. Discrete Math 277: 87–100 · Zbl 1069.68050 · doi:10.1016/S0012-365X(03)00176-6
[11] Kantor WM (2003). Commutative semifields and symplectic spreads. J Algebra 270: 96–114 · Zbl 1041.51002 · doi:10.1016/S0021-8693(03)00411-3
[12] Knuth DE (1965). Finite semifields and projective planes. J Algebra 2: 182–217 · Zbl 0128.25604 · doi:10.1016/0021-8693(65)90018-9
[13] Lenz H (1954) Zur Begründung der analytischen Geometrie, S-B Math-Nat Kl Bayer Akad Wiss 17–72 · Zbl 0065.13301
[14] Lidl R, Niederreiter H (1983) Finite fields. Encyclopedia Math Appl vol. 20, Addison-Wesley, Reading, (now distributed by Cambridge University Press) · Zbl 0554.12010
[15] Ore O (1934) On a special class of polynomials. Trans Amer Math Soc 35:559–584 Errata, ibid. 36:275
[16] Ore O (1933). Theory of non-commutative polynomials. Annal. Math 34: 480–508 · Zbl 0007.15101 · doi:10.2307/1968173
[17] Ore O (1934). Contributions to the theory of finite fields. Trans Amer Math Soc 36: 243–274 · Zbl 0009.10003 · doi:10.1090/S0002-9947-1934-1501740-7
[18] Parshall KH (1983). In pursuit of the finite division algebra theorem and beyond: Joseph H. M. Wedderburn, Leonard E. Dickson and Oswald Veblen. Arch Internat Hist Sci 33: 274–299 · Zbl 0658.01012
[19] Vaughan TP (1974). Polynomials and linear transformations over finite fields. J Reine Angew Math 267: 179–206 · Zbl 0293.12014 · doi:10.1515/crll.1974.267.179
[20] Wedderburn JHM (1905). A theorem on finite algebras. Trans Amer Math Soc 6: 349–352 · doi:10.1090/S0002-9947-1905-1500717-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.