Broglia, Fabrizio; Pieroni, Federica The Nullstellensatz for real coherent analytic surfaces. (English) Zbl 1215.14058 Rev. Mat. Iberoam. 25, No. 2, 781-798 (2009). Let \(X\) be a real coherent analytic space, \({\mathcal O}_X\) the sheaf of analytic functions, \({\mathcal O}(X)\) the ring of global analytic functions. Given an ideal \({\mathfrak a}\subseteq{\mathcal O}(X)\), the zero set of \({\mathfrak a}\) is denoted by \({\mathcal Z}({\mathfrak a})\), the vanishing ideal of \({\mathcal Z}({\mathfrak a})\) is denoted by \({\mathcal I}({\mathcal Z}({\mathfrak a}))\). Nullstellensätze describe the connections between the ideals \({\mathfrak a}\) and \({\mathcal I}({\mathcal Z}({\mathfrak a}))\): When is it true that \({\mathfrak a}={\mathcal I}({\mathcal Z}({\mathfrak a}))\)? The authors show that, given a real coherent analytic surface \(X\), the equality \({\mathfrak a}={\mathcal I}({\mathcal Z}({\mathfrak a}))\) holds if and only if \({\mathfrak a}\) is a real ideal and is saturated (i.e., \({\mathfrak a}\) is the ideal of global sections of the ideal sheaf generated by \({\mathfrak a}\)). It remains an open question whether the result can be extended to the space \(\mathbb{R}^3\). However, it is shown that the result fails for \(\mathbb{R}^3\) if and only if there is a so-called special irreducible functions that generates a real ideal. Primary ideals and primary decompositions of saturated ideals are among the main tools of the paper. Reviewer: Niels Schwartz (Passau) Cited in 2 Documents MSC: 14P15 Real-analytic and semi-analytic sets 14P99 Real algebraic and real-analytic geometry 32B10 Germs of analytic sets, local parametrization 11E25 Sums of squares and representations by other particular quadratic forms Keywords:real analytic space; analytic function; zero set; vanishing ideal; Nullstellensatz; primary decomposition PDF BibTeX XML Cite \textit{F. Broglia} and \textit{F. Pieroni}, Rev. Mat. Iberoam. 25, No. 2, 781--798 (2009; Zbl 1215.14058) Full Text: DOI Euclid EuDML References: [1] Acquistapace, F., Broglia, F., Fernando, J.F. and Ruiz, J.M.: On the finiteness of Pythagoras numbers of real meromorphic functions. Article · Zbl 1197.14060 [2] Acquistapace, F., Broglia, F., Fernando, J.F.: On a global analytic Positivstellensatz. Ark. Mat. 47 (2009), no. 1, 13-39. · Zbl 1216.14053 [3] Acquistapace, F., Broglia, F., Tognoli, A.: Sulla normalizzazione degli spazi analitici reali. Boll. Un. Mat. Ital. (4) 12 (1975), no. 1-2, 26-36. · Zbl 0318.32001 [4] Adkins, W.A.: A real analytic Nullstellensatz for two dimensional manifolds. Boll. Un. Mat. Ital. B (5) 14 (1977), no. 3, 888-903. · Zbl 0444.14019 [5] Adkins, W.A. and Leahy, J.V.: A global real analytic Nullstellensatz. Duke Math. Journal 43 (1976), no. 1, 81-86. · Zbl 0353.32009 [6] Andradas, C., Bröcker, L. and Ruiz, J.M.: Constructible sets in real geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 33 . Springer-Verlag, Berlin, 1996. · Zbl 0873.14044 [7] Andradas, C. and Díaz-Cano, A.: Some properties of global semianalytic subsets of coherent surfaces. Illinois J. Math. 48 (2004), no. 2, 519-537. · Zbl 1077.14087 [8] Atiyah, M.F. and Macdonald, I.G.: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. · Zbl 0175.03601 [9] Bochnak, J., Coste, M. and Roy, M.F.: Real algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 36 . Springer-Verlag, Berlin, 1998. · Zbl 0912.14023 [10] Bochnak, J. and Risler, J.J.: Le théorème des zéros pour les variétés analytiques réelles de dimension \(2\). Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 353-363. · Zbl 0315.14008 [11] Cain, B.E.: A two color theorem for analytic maps in \(\R ^n\). Proc. Amer. Math. Soc. 39 (1973), 261-266. · Zbl 0236.26012 [12] Coen, S.: Sul rango dei fasci coerenti. Boll. Un. Mat. Ital. (3) 22 (1967), 373-382. · Zbl 0164.38202 [13] De Bartolomeis, P.: Algebre di Stein nel caso reale. Rend. Accad. Naz. XL (5) 1/2 (1975/76), 105-144 (1977). · Zbl 0353.32010 [14] De Bartolomeis, P.: Una nota sulla topologia delle algebre reali coerenti. Boll. Un. Mat. Ital. (5) 13A (1976), no. 1, 123-125. · Zbl 0353.32011 [15] Fernando, J.F.: On the 17th Hilbert Problem for global analytic functions on dimension \(3\). To appear in Commentarii Math. Helvetici . [16] Forster, O.: Primärzerlung in Steinschen Algebren. Math. Annalen 154 (1964), 307-329. · Zbl 0135.12602 [17] Galbiati, M.: Stratifications et ensemble de non-cohérence d’un espace analytique réel. Invent. Math. 34 (1976), no. 2, 113-128. · Zbl 0314.32006 [18] Galbiati, M. and Tognoli, A.: Alcune proprietà delle varità algebriche reali. Ann. Scuola Norm. Sup. Pisa (3) 27 , 359-404 (1973). · Zbl 0277.14010 [19] Pieroni, F.: A sufficient condition for a real global Nulstellensatz. [20] Ruiz, J.: On Hilbert’s 17th problem and real Nullstellensatz for global analytic functions. Math. Z. 190 (1985), no. 3, 447-454. · Zbl 0579.14021 [21] Ruiz, J.: The basic theory of power series. Advanced Lectures in Mathematicas. Friedr. Vieweg & Sohn, Braunschweig, 1993. [22] Siu, Y.T.: Hilbert Nullstellensatz in global complex analytic case. Proc. Amer. Math. Soc. 19 (1968), 296-298. JSTOR: · Zbl 0162.10401 [23] Tognoli, A.: Proprietà globali degli spazi analitici reali. Ann. Mat. Pura Appl. (4) 75 (1967), 143-218. · Zbl 0158.33001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.