zbMATH — the first resource for mathematics

A method of proving non-unitarity of representations of \(p\)-adic groups. I. (English) Zbl 1215.22009
For a connected reductive group \(G\) over a \(p\)-adic field \(F\), the Steinberg representation \(St\) and its Aubert dual, the trivial representation, are both unitary. Casselman proved that all other irreducible representations having the same infinitesimal character as \(St\) are non-unitary.
In this paper, the authors give a partial generalization of Casselman’s result. They consider generalized Steinberg representations (defined below) of \(G_\ell=Sp(2\ell,F)\) or \(SO(2\ell+1,F)\).
Let \(\nu = |\det|_F\). Let \(\rho\) be an irreducible unitary cuspidal representation of \(GL(k,F)\) and \(\sigma\) an irreducible cuspidal representation of \(G_\ell\). Suppose that \(\text{Ind}^{G_{k+\ell}}(\nu^\alpha \rho \otimes \sigma)\) reduces for some \(\alpha \in (1/2)\mathbb{Z}_{>0}\). Then the representation
\[ \Pi= \text{Ind}^{G_{(n+1)k+\ell}}(\nu^{\alpha + n} \rho \otimes \nu^{\alpha + n-1} \rho \otimes \cdots \otimes \nu^{\alpha } \rho \otimes \sigma) \]
has the unique irreducible subrepresentation \(\pi\) and the unique irreducible quotient \(\pi'\). The representation \(\pi\) is square-integrable (and hence unitary); it is called a generalized Steinberg representation. The representation \(\pi'\) is the Aubert involution of \(\pi\). This paper and its sequel prove that all irreducible subquotients of \(\Pi\) different from \(\pi\) and \(\pi'\) are not unitarizable. The method of proof is based on the fact that the representation induced from a unitary representation is unitary, and therefore semi-simple.

22E50 Representations of Lie and linear algebraic groups over local fields
22E35 Analysis on \(p\)-adic Lie groups
11F70 Representation-theoretic methods; automorphic representations over local and global fields
Full Text: DOI
[1] Aubert A.-M.: Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longeur finie d’un groupe réductif p-adique. Trans. Am. Math. Soc. 347, 2179–2189 (1995) · Zbl 0827.22005
[2] Aubert A.-M.: Erratum to Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longeur finie d’un groupe réductif p-adique. Trans. Am. Math. Soc. 348, 4687–4690 (1996) · Zbl 0861.22012
[3] Ban D.: Parabolic induction and Jacquet modules of representations of O(2n, F). Glas. Mat. Ser. III 34(54), 147–185 (1999) · Zbl 0954.22013
[4] Ban D., Jantzen C.: Degenerate principal series for even orthogonal groups. Represent. Theory 7, 440–480 (2003) · Zbl 1054.22015
[5] Bernstein, J., rédigé par P. Deligne: Le ”centre” de Bernstein, ”Représentations des Groupes Réductifs sur un Corps Local” written by Bernstein, J.-N., Deligne, P., Kazhdan, D., Vignéras, M.-F. Hermann, Paris (1984)
[6] Bernstein I.N., Zelevinsky A.V.: Induced representations of reductive \({\mathfrak{p}}\) -adic groups. I. Ann. Sci. École Norm. Sup. 10, 441–472 (1977) · Zbl 0412.22015
[7] Casselman, W.: Introduction to the theory of admissible representations of reductive p-adic groups, preprint
[8] Casselman W.: A new non-unitarity argument for p-adic representations. J. Fac. Sci. Tokyo 28, 907–928 (1982) · Zbl 0519.22011
[9] Hanzer M.: The unitarizability of the Aubert dual of the strongly positive discrete series. Israel J. Math. 169(1), 251–294 (2009) · Zbl 1178.22018
[10] Howe R., Moore C.C.: Asymptotic properties of unitary representations. J. Funct. Anal. 32, 72–96 (1979) · Zbl 0404.22015
[11] Jantzen C.: On supports of induced representations for symplectic and odd-orthogonal groups. Am. J. Math. 119, 1213–1262 (1997) · Zbl 0888.22013
[12] Moeglin C., Tadić M.: Construction of discrete series for classical p-adic groups. J. Am. Math. Soc. 15, 715–786 (2002) · Zbl 0992.22015
[13] Rodier, F.: Représentations de GL(n, k) où k est un corps p-adique, Séminaire Bourbaki, 587 (1982), Astérisque 92–93, 201–218 (1982)
[14] Sally P.J., Tadić M.: Induced representations and classifications for GSp(2, F) and Sp(2, F). Mem. Soc. Math. France 52, 75–133 (1993) · Zbl 0784.22008
[15] Schneider P., Stuhler U.: Representation theory and sheaves on the Bruhat–Tits building. Publ. Math. IHES 85, 97–191 (1997) · Zbl 0892.22012
[16] Shahidi F.: A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups. Ann. Math. 132, 273–330 (1990) · Zbl 0780.22005
[17] Shahidi F.: Twisted endoscopy and reducibility of induced representations for p-adic groups. Duke Math. J. 66, 1–41 (1992) · Zbl 0785.22022
[18] Silberger A.: Special representations of reductive p-adic groups are not integrable. Ann. Math. (2) 111, 571–587 (1980) · Zbl 0437.22015
[19] Tadić M.: Classification of unitary representations in irreducible representations of a general linear group (non-archimedean case). Ann. Sci. Éc. Norm. Sup. 19, 335–382 (1986) · Zbl 0614.22005
[20] Tadić M.: Structure arising from induction and Jacquet modules of representations of classical p-adic groups. J. Algebra 177, 1–33 (1995) · Zbl 0874.22014
[21] Tadić M.: On regular square integrable representations of p-adic groups. Am. J. Math. 120, 159–210 (1998) · Zbl 0903.22008
[22] Zelevinsky A.V.: Induced representations of reductive p-adic groups II. Ann. Sci. Éc. Norm. Sup. 13, 165–210 (1980) · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.