On the Siegel-Weil theorem for loop groups. I. (English) Zbl 1215.22010

A symplectic, nilpotent \(t\)-module is an \(F[t]\)-module, where \(F\) is a number field, annihilated by a sufficiently large power of \(t\) and equipped with a symplectic form for which \(t\) is self-dual. The main result of this paper asserts that in the context of symplectic, nilpotent \(t\)-modules the Siegel-Weil formula holds for symplectic and orthogonal groups over \(F[t]/(p(t))\) for an arbitrary polynomial \(p(t)\). This result is used in the sequel of the present paper to prove the Siegel-Weil theorem for arithmetic quotients of loop groups. Another possible application is a derivation of the Hasse principle.


22E67 Loop groups and related constructions, group-theoretic treatment
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
Full Text: DOI arXiv


[1] H. Garland, The arithmetic theory of loop groups , Inst. Hautes Études Sci. Publ. Math. 52 (1980), 5-36. · Zbl 0475.17004
[2] -, Eisenstein series on arithmetic quotients of loop groups , Math. Res. Lett. 6 (1999), 723-733. · Zbl 1005.11041
[3] -, “Certain Eisenstein series on loop groups: Convergence and the constant term” in Algebraic Groups and Arithmetic , Tata Inst. Fund. Res., Mumbai, 2004, 275-319. · Zbl 1157.11314
[4] -, Absolute convergence of Eisenstein series on loop groups , Duke Math J. 135 (2006), 203-260. · Zbl 1160.11025
[5] -, “Eisenstein series on loop groups: Maass-Selberg relations, I” in Algebraic Groups and Homogeneous Spaces , ed. V. B. Mehta, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 275-300. · Zbl 1232.11090
[6] -, Eisenstein series on loop groups: Maass-Selberg relations, II , Amer. J. Math. 129 (2007), 723-784. · Zbl 1129.11038
[7] -, Eisenstein series on loop groups: Maass-Selberg relations, III , Amer. J. Math. 129 (2007), 1277-1353. · Zbl 1194.11088
[8] -, “Eisenstein series on loop groups: Maass-Selberg relations, IV” in Lie Algebras, Vertex Operator Algebras and Their Applications , Contemp. Math. 442 , Amer. Math. Soc., Providence, 2007, 115-158. · Zbl 1232.11091
[9] H. Garland and Y. Zhu, On the Siegel-Weil theorem for loop groups, II , · Zbl 1254.22012
[10] D. G. James, On Witt’s theorem for unimodular, quadratic forms, II , Pacific J. Math. 33 (1970), 645-652. · Zbl 0185.11003
[11] S. S. Kudla and S. Rallis, On the Weil-Siegel formula , J. Reine Angew. Math. 387 (1988), 1-68. · Zbl 0644.10021
[12] R. P. Langlands, “Eisenstein series” in Algebraic Groups and Discontinuous Subgroups (Boulder, Colo., 1965) , Proc. Sympos. Pure Math. 9 Amer. Math. Soc., Providence, 1966, 235-252.
[13] A. Weil, Sur certains groupes d’opérateurs unitaires , Acta Math. 111 (1964), 143-211. · Zbl 0203.03305
[14] -, Sur la formule de Siegel dans la théorie des groupes classiques , Acta Math. 113 (1965), 1-87. · Zbl 0161.02304
[15] Y. Zhu, Theta functions and Weil representations of loop symplectic groups , Duke Math. J 143 (2008), 17-39. · Zbl 1216.11051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.