×

The semiclassical Sobolev orthogonal polynomials: a general approach. (English) Zbl 1215.33005

A linear functional \({\mathbf u}\) (defined on the space of polynomials \(\mathbb P)\) is called a semiclassical functional if it satisfies a distributional equation with polynomial coefficients:
\[ {\mathcal D}(\varphi{\mathbf u})=\psi{\mathbf u}, \]
where \({\mathcal D}\) is the differential, or the difference or the \(q\)-difference operator. The polynomial sequence \((Q_n^{(\lambda)})\) is called a semiclassical Sobolev polynomial sequence when it is orthogonal with respect to the inner product
\[ \langle p,r\rangle _S=\langle{\mathbf u},pr\rangle+\lambda\langle{\mathbf u},{\mathcal D} p{\mathcal D} r\rangle. \]
The authors get algebraic and differential/difference properties for such polynomials as well as algebraic relations between them and the polynomial sequence orthogonal with respect to the semiclassical functional \({\mathbf u}\). In particular, a linear operator \({\mathcal J}\) such that
\[ \langle{\mathcal J}p, r\rangle_S=\langle p,{\mathcal J}r\rangle_S,\quad p,r\in\mathbb P, \]
is constructed.
The main goal of the article is to give a general approach to the study of the polynomials orthogonal with respect to the above nonstandard inner product regardless of the type of operator \({\mathcal D}\) considered. Finally, the results are illustrated by applying them to some known families of Sobolev orthogonal polynomials (Jacobi-Sobolev and \(\Delta\)-Meixner-Sobolev ones) as well as to some new ones introduced for the first time, such as \(q\)-Freud-Sobolev ones and another family related to a 1-singular semiclassical functional considered by Medem.

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Area, I.; Godoy, E.; Marcellán, F., Classification of all \(\Delta \)-coherent pairs, Integral Transforms Spec. Funct., 9, 1, 1-18 (2000) · Zbl 0972.42017
[2] Area, I.; Godoy, E.; Marcellán, F., \(q\)-coherent pairs and \(q\)-orthogonal polynomials, Appl. Math. Comput., 128, 2-3, 191-216 (2002) · Zbl 1020.33005
[3] Chihara, T. S., An introduction to Orthogonal Polynomials (1978), Gordon and Breach: Gordon and Breach New York · Zbl 0389.33008
[4] Costas-Santos, R. S.; Marcellán, F., Second structure relation for \(q\)-semiclassical polynomials of the Hahn tableau, J. Math. Anal. Appl., 329, 1, 206-228 (2007) · Zbl 1113.33022
[5] Hahn, W. M., Über orthogonalpolynomen, die \(q\)-differentialgleichungen genügen, Math. Z., 39, 636-638 (1949)
[6] Iserles, A.; Koch, P. E.; Nørsett, S. P.; Sanz-Serna, J. M., On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory, 65, 151-175 (1991) · Zbl 0734.42016
[7] Kheriji, L., An introduction to the \(H_q\)-semiclassical orthogonal polynomials, Methods Appl. Anal., 10, 387-412 (2003) · Zbl 1058.33018
[8] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\); R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\)
[9] Lewis, D. C., Polynomial least square approximations, Amer. J. Math., 69, 273-278 (1947) · Zbl 0033.35603
[10] Marcellán, F.; Alfaro, M.; Rezola, M. L., Orthogonal polynomials on Sobolev spaces: old and new directions, J. Comput. Appl. Math., 48, 113-131 (1993) · Zbl 0790.42015
[11] Marcellán, F.; Moreno-Balcázar, J. J., Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports, Acta Appl. Math., 94, 163-192 (2006) · Zbl 1137.42312
[12] Maroni, P., Une Théorie Algebrique des Polynômes Orthogonaux. Applications aux Polynômes Orthogonaux Semiclassiques, (Orthogonal Polynomials and their Applications. Orthogonal Polynomials and their Applications, IMACS Annals on Comput. and App. Math., vol. 9 (1991)), 98-130 · Zbl 0944.33500
[13] Maroni, P., Variations around classical orthogonal polynomials. Connected problems, J. Comput. Appl. Math., 48, 133-155 (1993) · Zbl 0790.33006
[14] Maroni, P., Semi-classical character and finite-type relations between polynomial sequences, Appl. Numer. Math., 31, 3, 295-330 (1999) · Zbl 0962.42017
[15] Martínez-Finkelshtein, A., Asymptotic properties of Sobolev orthogonal polynomials, J. Comput. Appl. Math., 99, 491-510 (1998) · Zbl 0933.42013
[16] Martínez-Finkelshtein, A., Analytic aspects of Sobolev orthogonal polynomials revisited, J. Comput. Appl. Math., 127, 255-266 (2001) · Zbl 0971.33004
[17] Medem, J. C., A family of singular semi-classical functionals, Indag. Math., 13, 3, 351-362 (2002) · Zbl 1031.42025
[18] Meijer, H. G., A short history of orthogonal polynomials in a Sobolev space I. The non-discrete case, Nieuw Arch. Wiskd., 14, 93-112 (1996) · Zbl 0862.33001
[19] Meijer, H. G., Determination of all coherent pairs, J. Approx. Theory, 89, 321-343 (1997) · Zbl 0880.42012
[20] T.E. Pérez, Polinomios ortogonales respecto a productos de Sobolev: el caso continuo, Doctoral Dissertation, Universidad de Granada, 1994.; T.E. Pérez, Polinomios ortogonales respecto a productos de Sobolev: el caso continuo, Doctoral Dissertation, Universidad de Granada, 1994.
[21] Sfaxi, R.; Marcellán, F., Second structure relation for semiclassical orthogonal polynomials, J. Comput. Appl. Math., 200, 2, 537-554 (2007) · Zbl 1125.33008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.