The ratio of eigenvalues of the Dirichlet eigenvalue problem for equations with one-dimensional \(p\)-Laplacian. (English) Zbl 1215.34034

The authors investigate the ratio of the eigenvalues \(\{\lambda_n\}_{n\geq 1}\) of the boundary value problem
\[ \big(\Phi(x')\big)'+c(t)\Phi(x)= \lambda\Phi(x) \]
with a one-dimensional \(p\)-Laplacian \((\Phi(x'))'=(|x'|^{p-2}(x'))'\), \(p>1\), a nonnegative differentiable function \(c\), and Dirichlet boundary conditions. They show that
\[ \frac{\lambda_n}{\lambda_m}\leq \frac{n^p}{m^p},\quad n>m. \]
This extends the result of an article by M. Horváth and M. Kiss [Proc. Am. Math. Soc. 134, No. 5, 1425–1434 (2006; Zbl 1098.34067)], where the linear case \(p=2\) was considered.


34B24 Sturm-Liouville theory
34B09 Boundary eigenvalue problems for ordinary differential equations
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
47E05 General theory of ordinary differential operators


Zbl 1098.34067
Full Text: DOI


[1] R. P. Agarwal, S. R. Grace, and D. O’Regan, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002. · Zbl 1186.33008
[2] O. Do and P. , “Half-Linear Differential Equations,” Handbook of Differential Equations, North Holland Mathematics Studies 202, Elsevier, Amsterdam, The Netherlands, 2005.
[3] M. Horváth and M. Kiss, “A bound for ratios of eigenvalues of Schrödinger operators with single-well potentials,” Proceedings of the American Mathematical Society, vol. 134, no. 5, pp. 1425-1434, 2006. · Zbl 1098.34067 · doi:10.1090/S0002-9939-05-08100-1
[4] M. S. Ashbaugh and R. Benguria, “Best constant for the ratio of the first two eigenvalues of one-dimensional Schrödinger operators with positive potentials,” Proceedings of the American Mathematical Society, vol. 99, no. 3, pp. 598-599, 1987. · Zbl 0618.34021 · doi:10.2307/2046373
[5] M. S. Ashbaugh and R. D. Benguria, “A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions,” Annals of Mathematics, vol. 135, no. 3, pp. 601-628, 1992. · Zbl 0757.35052 · doi:10.2307/2946578
[6] M. S. Ashbaugh and R. D. Benguria, “Eigenvalue ratios for Sturm-Liouville operators,” Journal of Differential Equations, vol. 103, no. 1, pp. 205-219, 1993. · Zbl 0785.34027 · doi:10.1006/jdeq.1993.1047
[7] V. I. Kopylov, “The ratio of the eigenvalues of the Schrödinger operator with a positive potential,” Funktsional’nyj Analiz, vol. 36, pp. 20-23, 1997 (Russian). · Zbl 0906.34060
[8] J. Fleckinger, E. M. Harrell, II, and F. de Thélin, “On the fundamental eigenvalue ratio of the p-Laplacian,” Bulletin des Sciences Mathématiques, vol. 131, no. 7, pp. 613-619, 2007. · Zbl 1127.35012 · doi:10.1016/j.bulsci.2006.03.016
[9] J. P. Pinasco, “Lower bounds for eigenvalues of the one-dimensional p-Laplacian,” Abstract and Applied Analysis, vol. 2004, no. 2, pp. 147-153, 2004. · Zbl 1074.34080 · doi:10.1155/S108533750431002X
[10] Á. Elbert, “A half-linear second order differential equation,” in Qualitative Theory of Differential Equations, Vol. I, II (Szeged, 1979), vol. 30 of Colloq. Math. Soc. János Bolyai, pp. 153-180, North-Holland, Amsterdam, The Netherlands, 1981. · Zbl 0511.34006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.