×

zbMATH — the first resource for mathematics

An optimal variance estimate in stochastic homogenization of discrete elliptic equations. (English) Zbl 1215.35025
This paper contains a fundamental theoretical result of clear practical importance: It estimates the dominant error when computing numerically the effective diffusion tensor (in a linear elliptic equation), when the original microscopic model is a discrete elliptic equation with random coefficients posed in a \(d\)-dimensional lattice. As far as we are aware, this is the first result of this type available in the literature. From the applications point of view, it would be very useful to see to which extent the authors’ working techniques are applicable beyond the linear setting.

MSC:
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
39A70 Difference operators
60H25 Random operators and equations (aspects of stochastic analysis)
60F99 Limit theorems in probability theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bergh, J. and Löfström, J. (1976). Interpolation Spaces. An Introduction . Springer, Berlin. · Zbl 0344.46071
[2] Bourgeat, A. and Piatnitski, A. (2004). Approximations of effective coefficients in stochastic homogenization. Ann. Inst. H. Poincaré Probab. Statist. 40 153-165. · Zbl 1058.35023
[3] Delmotte, T. (1997). Inégalité de Harnack elliptique sur les graphes. Colloq. Math. 72 19-37. · Zbl 0871.31008
[4] Dolzmann, G., Hungerbühler, N. and Müller, S. (2000). Uniqueness and maximal regularity for nonlinear elliptic systems of n -Laplace type with measure valued right hand side. J. Reine Angew. Math. 520 1-35. · Zbl 0937.35065
[5] E, W., Ming, P. and Zhang, P. (2005). Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Amer. Math. Soc. 18 121-156 (electronic). · Zbl 1060.65118
[6] Gilbarg, D. and Trudinger, N. S. (2001). Elliptic Partial Differential Equations of Second Order . Springer, Berlin. · Zbl 1042.35002
[7] Grüter, M. and Widman, K.-O. (1982). The Green function for uniformly elliptic equations. Manuscripta Math. 37 303-342. · Zbl 0485.35031
[8] Han, Q. and Lin, F. (1997). Elliptic Partial Differential Equations. Courant Lecture Notes in Math. 1 . New York Univ., New York. · Zbl 1052.35505
[9] Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1-19. · Zbl 0588.60058
[10] Klenke, A. (2006). Wahrscheinlichkeitstheorie [ Probability Theory ]. Springer, Berlin. · Zbl 1103.60001
[11] Kozlov, S. M. (1979). The averaging of random operators. Mat. Sb. ( N.S. ) 109(151) 188-202, 327.
[12] Kozlov, S. M. (1987). Averaging of difference schemes. Math. USSR Sbornik 57 351-369. · Zbl 0639.65052
[13] Künnemann, R. (1983). The diffusion limit for reversible jump processes on Z d with ergodic random bond conductivities. Comm. Math. Phys. 90 27-68. · Zbl 0523.60097
[14] Ledoux, M. (2001). Logarithmic Sobolev inequalities for unbounded spin systems revisited. In Séminaire de Probabilités , XXXV. Lecture Notes in Math. 1755 167-194. Springer, Berlin. · Zbl 0979.60096
[15] Martinsson, P.-G. and Rodin, G. J. (2002). Asymptotic expansions of lattice Green’s functions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458 2609-2622. · Zbl 1022.39022
[16] Meyers, N. G. (1963). An L p estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa (3) 17 189-206. · Zbl 0127.31904
[17] Naddaf, A. and Spencer, T. (1998). Estimates on the variance of some homogenization problems. · Zbl 0871.35010
[18] Papanicolaou, G. C. and Varadhan, S. R. S. (1981). Boundary value problems with rapidly oscillating random coefficients. In Random Fields , Vol. I , II ( Esztergom , 1979). Colloquia Mathematica Societatis János Bolyai 27 835-873. North-Holland, Amsterdam. · Zbl 0499.60059
[19] Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30 . Princeton Univ. Press, Princeton, NJ. · Zbl 0207.13501
[20] Stein, E. M. (1993). Harmonic Analysis : Real-variable Methods , Orthogonality , and Oscillatory Integrals. Princeton Mathematical Series 43 . Princeton Univ. Press, Princeton, NJ. · Zbl 0821.42001
[21] Yurinskiĭ, V. V. (1986). Averaging of symmetric diffusion in a random medium. Sibirsk. Mat. Zh. 27 167-180, 215. · Zbl 0614.60051
[22] Zhou, X. Y. (1993). Green function estimates and their applications to the intersections of symmetric random walks. Stochastic Process. Appl. 48 31-60. · Zbl 0810.60064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.