zbMATH — the first resource for mathematics

Optimization problems related to the John uniqueness theorem. (English. Russian original) Zbl 1215.46028
St. Petersbg. Math. J. 21, No. 5, 705-729 (2010); translation from Algebra Anal. 21, No. 5, 37-69 (2009).
The classical F. John uniqueness theorem states that, if a function \(f\in C^\infty(\mathbb{R}^n)\) with zero integrals over all spheres of a fixed radius \(r\) vanishes in some ball of radius \(r\), then \(f= 0\) in \(\mathbb{R}^n\). Several variations of the classical F. John uniqueness theorem have been developed. One of them refers to the convolution equation, \(f* T= 0\), where \(T\) is a given distribution with compact support in \(\mathbb{R}^n\). This research paper addresses the spectrum structure problem whereby a distribution is periodic in the mean and satisfies uniqueness conditions of the F. John type. The solution of this problem is obtained for a wide class of distributions on arbitrary Riemannian two-point-homogeneous spaces. Many details are clearly included in the paper.

46F10 Operations with distributions and generalized functions
Full Text: DOI
[1] F. John, Abhängigkeiten zwischen den Flächenintegralen einer stetigen Funktion, Math. Ann. 111 (1935), no. 1, 541 – 559 (German). · Zbl 0012.25402 · doi:10.1007/BF01472237 · doi.org
[2] Fritz John, Plane waves and spherical means applied to partial differential equations, Interscience Publishers, New York-London, 1955. · Zbl 0067.32101
[3] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Academic Publishers, Dordrecht, 2003. · Zbl 1043.53003
[4] J. Denmead Smith, Harmonic analysis of scalar and vector fields in \?\(^{n}\), Proc. Cambridge Philos. Soc. 72 (1972), 403 – 416. · Zbl 0247.42021
[5] B. Ya. Levin, Distribution of zeros of entire functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956 (Russian). B. Ja. Levin, Distribution of zeros of entire functions, Revised edition, Translations of Mathematical Monographs, vol. 5, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman.
[6] Последовател\(^{\приме}\)ности полиномов из ѐкспонент, ”Наука”, Мосцощ, 1980 (Руссиан).
[7] Yu. I. Lyubich, On uniqueness theorem for periodic functions in means, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 81 (1978), p. 166; English transl. in J. Soviet Math. 26 (1984), no. 5.
[8] P. P. Kargaev, Zeros of functions periodic in the mean, Mat. Zametki 37 (1985), no. 3, 322 – 325, 460 (Russian). · Zbl 0613.42008
[9] Paul Koosis, Introduction to \?_\? spaces, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolff’s proof of the corona theorem. · Zbl 0435.30001
[10] Eric Todd Quinto, Pompeiu transforms on geodesic spheres in real analytic manifolds, Israel J. Math. 84 (1993), no. 3, 353 – 363. · Zbl 0791.58017 · doi:10.1007/BF02760947 · doi.org
[11] D. A. Zaraĭskiĭ, Sharpening a uniqueness theorem for solutions of a convolution equation, Proceedings of the Institute of Applied Mathematics and Mechanics. Vol. 12 (Russian), Tr. Inst. Prikl. Mat. Mekh., vol. 12, Nats. Akad. Nauk Ukrainy Inst. Prikl. Mat. Mekh., Donetsk, 2006, pp. 69 – 75 (Russian, with Russian summary).
[12] V. V. Volchkov, Uniqueness theorems for solutions of a convolution equation on symmetric spaces, Izv. Ross. Akad. Nauk Ser. Mat. 70 (2006), no. 6, 3 – 18 (Russian, with Russian summary); English transl., Izv. Math. 70 (2006), no. 6, 1077 – 1092. · Zbl 1144.43008 · doi:10.1070/IM2006v070n06ABEH002339 · doi.org
[13] V. V. Volchkov, A local two-radii theorem on symmetric spaces, Mat. Sb. 198 (2007), no. 11, 21 – 46 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 11-12, 1553 – 1577. · Zbl 1144.43009 · doi:10.1070/SM2007v198n11ABEH003896 · doi.org
[14] Vit. V. Volchkov, Functions with zero spherical mean values on compact two-point-homogeneous spaces, Mat. Sb. 198 (2007), no. 4, 21 – 46 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 3-4, 465 – 490. · Zbl 1156.43005 · doi:10.1070/SM2007v198n04ABEH003845 · doi.org
[15] Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. · Zbl 0543.58001
[16] Lars Hörmander, The analysis of linear partial differential operators. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. Lars Hörmander, The analysis of linear partial differential operators. I, 2nd ed., Springer Study Edition, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. · Zbl 0712.35001
[17] G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies, No. 78. · Zbl 0265.53039
[18] Sigurdur Helgason, Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, vol. 39, American Mathematical Society, Providence, RI, 1994. · Zbl 0809.53057
[19] Асимптотические разложения интегралов. Том 1, Издат. ”Зинатне”, Рига, 1974 (Руссиан).
[20] V. V. Volchkov and Vit. V. Volchkov, Uniqueness theorems and description of solutions for convolution equations on symmetric spaces and for the twisted convolution equations on \( \mathbb{C}^n\), Donetsk. Nat. Univ., Donetsk, 2005. (English) · Zbl 1088.43003
[21] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. · Zbl 0052.29502
[22] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. · Zbl 0232.42007
[23] R. E. Edwards, Fourier series. A modern introduction. Vol. 1, 2nd ed., Graduate Texts in Mathematics, vol. 64, Springer-Verlag, New York-Berlin, 1979. · Zbl 0424.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.