×

Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators. (English) Zbl 1215.47012

In this paper, the authors discuss the hypercyclicity and supercyclicity of semigroups generated by Ornstein-Uhlenbeck operators. They show that, under certain conditions, the semigroup is chaotic for the one-dimensional model, otherwise, it is supercyclic but not hypercyclic. For the multi-dimensional case, they obtain similar results.

MSC:

47A16 Cyclic vectors, hypercyclic and chaotic operators
47D06 One-parameter semigroups and linear evolution equations
47D07 Markov semigroups and applications to diffusion processes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Banasiak J.: Birth-and-death type systems with parameter and chaotic dynamics of some linear kinetic models. Z. Anal. Anwendungen 24, 675–690 (2005) · Zbl 1103.34048 · doi:10.4171/ZAA/1262
[2] Banasiak J., Lachowicz M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris Ser. II b 329, 439–444 (2001)
[3] Banasiak J., Lachowicz M., Moszyński M.: Topological chaos: when topology meets medicine. Appl. Math. Lett. 16, 303–308 (2003) · Zbl 1075.47024 · doi:10.1016/S0893-9659(03)80048-4
[4] Banasiak J., Moszyński M.: A generalization of Desch-Schappacher-Webb criteria for chaos. Discrete Contin. Dyn. Syst. 12, 959–972 (2005) · Zbl 1084.47033 · doi:10.3934/dcds.2005.12.959
[5] Banasiak J., Moszyński M.: Hypercyclicity and chaoticity spaces for C 0-semigroups. Discrete Contin. Dyn. Syst. 20, 577–587 (2008) · Zbl 1152.47008
[6] F. Bayart and T. Bermúdez, Semigroups of chaotic operators. Preprint, 2007.
[7] Bermúdez T., Bonilla A., Emamirad H.: Chaotic tensor product semigroups. Semigroup Forum 71, 252–264 (2005) · Zbl 1094.47009 · doi:10.1007/s00233-005-0507-z
[8] Bermúdez T., Bonilla A., Torrea J.L.: Chaotic behavior of the Riesz transforms for Hermite expansions. J. Math. Anal. Appl. 337, 702–711 (2008) · Zbl 1274.42066 · doi:10.1016/j.jmaa.2007.03.069
[9] Bès J., Peris A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999) · Zbl 0941.47002 · doi:10.1006/jfan.1999.3437
[10] Conejero J.A., Müller V., Peris A.: Hypercyclic behaviour of operators in a hypercyclic C0-semigroup. J. Funct. Anal. 244, 342–348 (2007) · Zbl 1123.47010 · doi:10.1016/j.jfa.2006.12.008
[11] Costakis G., Peris A.: Hypercyclic semigroups and somewhere dense orbits. C. R. Math. Acad. Sci. Paris 335, 895–898 (2002) · Zbl 1041.47003
[12] deLaubenfels R., Emamirad H.: Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory Dynam. Systems 21, 1411–1427 (2001) · Zbl 0997.47027 · doi:10.1017/S0143385701001675
[13] deLaubenfels R., Emamirad H., Grosse-Erdmann K.G.: Chaos for semigroups of unbounded operators. Math. Nachr. 261(262), 47–59 (2003) · Zbl 1051.47006 · doi:10.1002/mana.200310112
[14] Desch W., Schappacher W., Webb G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergodic Theory Dynam. Systems 17, 793–819 (1997) · Zbl 0910.47033 · doi:10.1017/S0143385797084976
[15] Dyson J., Villella-Bressan R., Webb G.: Hypercyclicity of solutions of a transport equation with delays. Nonlinear Anal. 29, 1343–1351 (1997) · Zbl 0899.34046 · doi:10.1016/S0362-546X(96)00192-7
[16] El Mourchid S.: The imaginary point spectrum and hypercyclicity. Semigroup Forum 73, 313–316 (2006) · Zbl 1115.47009 · doi:10.1007/s00233-005-0533-x
[17] El Mourchid S., Metafune G., Rhandi A., Voigt J.: On the chaotic behaviour of size structured cell populations. J. Math. Anal. Appl. 339, 918–924 (2008) · Zbl 1127.92015 · doi:10.1016/j.jmaa.2007.07.034
[18] Emamirad H.: Hypercyclicity in the scattering theory for linear transport equation. Trans. Amer. Math. Soc. 350, 3707–3716 (1998) · Zbl 0899.35071 · doi:10.1090/S0002-9947-98-02062-5
[19] Herzog G.: On a universality of the heat equation. Math. Nachr. 188, 169–171 (1997) · Zbl 0886.35026 · doi:10.1002/mana.19971880110
[20] Howard K.E.: A size structured model of cell dwarfism. Discrete Contin. Dyn. Syst. Ser. B 1, 471–484 (2001) · Zbl 0989.92014 · doi:10.3934/dcdsb.2001.1.471
[21] Howard K.E.: A size and maturity structured model of cell dwarfism exhibiting chaotic behavior. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13, 3001–3013 (2003) · Zbl 1058.92016 · doi:10.1142/S0218127403008363
[22] Kalmes T.: On chaotic C 0-semigroups and infinitely regular hypercyclic vectors. Proc. Amer. Math. Soc. 134, 2997–3002 (2006) (electronic) · Zbl 1103.47028 · doi:10.1090/S0002-9939-06-08391-2
[23] Kalmes T.: Hypercyclic, mixing, and chaotic C0-semigroups induced by semiflows. Ergodic Theory Dynam. Systems 27, 1599–1631 (2007) · Zbl 1134.37006 · doi:10.1017/S0143385707000144
[24] L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups. Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 283, Boca Raton, FL, 2007. · Zbl 1109.35005
[25] Lunardi A.: On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures. Trans. Amer. Math. Soc. 349, 155–169 (1997) · Zbl 0890.35030 · doi:10.1090/S0002-9947-97-01802-3
[26] Metafune G.: L p -spectrum of Ornstein-Uhlenbeck operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)(30), 97–124 (2001) · Zbl 1065.35216
[27] Myjak J., Rudnicki R.: Stability versus chaos for a partial differential equation. Chaos Solitons Fractals 14, 607–612 (2002) · Zbl 1005.35029 · doi:10.1016/S0960-0779(01)00190-4
[28] Protopopescu V., Azmy Y.Y.: Topological chaos for a class of linear models. Math. Models Methods Appl. Sci. 2, 79–90 (1992) · Zbl 0770.58024 · doi:10.1142/S0218202592000065
[29] Takeo F.: Chaos and hypercyclicity for solution semigroups to chaos and hypercyclicity for solution semigroups to some partial differential equations. Nonlinear Anal. 63, 1943–1953 (2005) (electronic) · Zbl 1226.47009 · doi:10.1016/j.na.2005.02.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.