×

Algorithms construction for variational inequalities. (English) Zbl 1215.49020

Summary: We devote this paper to solving the Variational Inequality (VI) of finding \(x^*\) with property \(x^*\in \text{Fix}(T)\) such that \(\langle(A-\gamma f)x^*,x-x^*\rangle\geq 0\) for all \(x\in \text{Fix}(T)\). Note that this hierarchical problem is associated with some convex programming problems. For solving the above VI, we suggest two algorithms:
Implicit Algorithm: \(x_t= TPc[I-t(A-\gamma f)]x_t\) for all \(t\in(0,1)\) and
Explicit Algorithm: \(x_{n+1}= \beta_nx_n+(1-\beta_n) TPc[1-\alpha_n(A-\gamma f)]x_n\) for all \(n\geq 0\) .
It is shown that these two algorithms converge strongly to the unique solution of the above VI. As special cases, we prove that the proposed algorithms strongly converge to the minimum norm fixed point of \(T\).

MSC:

49J40 Variational inequalities
90C25 Convex programming
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] doi:10.1016/S0096-3003(03)00558-7 · Zbl 1134.49304
[2] doi:10.1016/j.amc.2007.01.021 · Zbl 1124.65056
[3] doi:10.1016/j.camwa.2010.08.021 · Zbl 1205.65185
[4] doi:10.1016/j.na.2007.11.001 · Zbl 1153.49009
[5] doi:10.1155/2009/208692 · Zbl 1180.47040
[9] doi:10.1002/cpa.3160200302 · Zbl 0152.34601
[10] doi:10.1023/A:1008643727926 · Zbl 0924.49009
[11] doi:10.1016/j.jmaa.2005.05.028 · Zbl 1095.47038
[12] doi:10.1023/B:JOTA.0000005048.79379.b6 · Zbl 1045.49018
[14] doi:10.1016/j.na.2009.12.029 · Zbl 1183.49012
[15] doi:10.1016/j.ejor.2011.01.042 · Zbl 1266.90186
[16] doi:10.1016/j.amc.2006.08.062 · Zbl 1121.65064
[17] doi:10.1137/S105262340343467X · Zbl 1079.90098
[19] doi:10.1088/0266-5611/23/4/015 · Zbl 1128.47060
[20] doi:10.1155/FPTA/2006/95453 · Zbl 1143.47305
[21] doi:10.1088/0266-5611/24/1/015015 · Zbl 1154.47055
[22] doi:10.1017/CBO9780511526152
[23] doi:10.1155/FPTA.2005.103 · Zbl 1123.47308
[24] doi:10.1016/j.jmaa.2004.04.059 · Zbl 1061.47060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.